Suppr超能文献

基于机器学习的胃萎缩病理组学特征的临床应用

Clinical application of machine learning-based pathomics signature of gastric atrophy.

作者信息

Lan Yadi, Han Bing, Zhai Tianyu, Xu Qianqian, Li Zhiwei, Liu Mingyue, Xue Yining, Xu Hongwei

机构信息

Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.

Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.

出版信息

Front Oncol. 2024 Feb 27;14:1289265. doi: 10.3389/fonc.2024.1289265. eCollection 2024.

Abstract

BACKGROUND

The diagnosis of gastric atrophy is highly subjective, and we aimed to establish a model of gastric atrophy based on pathological features to improve diagnostic consistency.

METHODS

We retrospectively collected the HE-stained pathological slides of gastric biopsies and used CellProfiler software for image segmentation and feature extraction of ten representative images for each sample. Subsequently, we employed the Least absolute shrinkage and selection operator (LASSO) to select features and different machine learning (ML) algorithms to construct the diagnostic models for gastric atrophy.

RESULTS

We selected 289 gastric biopsy specimens for training, testing, and external validation. We extracted 464 pathological features and screened ten features by LASSO to establish the diagnostic model for moderate-to-severe atrophy. The range of area under the curve (AUC) for various machine learning algorithms was 0.835-1.000 in the training set, 0.786-0.949 in the testing set, and 0.689-0.818 in the external validation set. LR model had the highest AUC value, with 0.900 (95% CI: 0.852-0.947) in the training set, 0.901 (95% CI: 0.807-0.996) in the testing set, and 0.818 (95% CI: 0.714-0.923) in the external validation set. The atrophy pathological score based on the LR model was associated with endoscopic atrophy grading (Z=-2.478, P=0.013) and gastric cancer (GC) (OR=5.70, 95% CI: 2.63-12.33, P<0.001).

CONCLUSION

The ML model based on pathological features could improve the diagnostic consistency of gastric atrophy, which is also associated with endoscopic atrophy grading and GC.

摘要

背景

胃萎缩的诊断具有高度主观性,我们旨在建立一种基于病理特征的胃萎缩模型,以提高诊断的一致性。

方法

我们回顾性收集了胃活检的苏木精-伊红(HE)染色病理切片,并使用CellProfiler软件对每个样本的十张代表性图像进行图像分割和特征提取。随后,我们采用最小绝对收缩和选择算子(LASSO)来选择特征,并使用不同的机器学习(ML)算法构建胃萎缩的诊断模型。

结果

我们选择了289例胃活检标本进行训练、测试和外部验证。我们提取了464个病理特征,并通过LASSO筛选出十个特征,以建立中重度萎缩的诊断模型。各种机器学习算法在训练集中的曲线下面积(AUC)范围为0.835 - 1.000,在测试集中为0.786 - 0.949,在外部验证集中为0.689 - 0.818。逻辑回归(LR)模型的AUC值最高,在训练集中为0.900(95%置信区间:0.852 - 0.947),在测试集中为0.901(95%置信区间:0.807 - 0.996),在外部验证集中为0.818(95%置信区间:0.714 - 0.923)。基于LR模型的萎缩病理评分与内镜下萎缩分级(Z = -2.478,P = 0.013)和胃癌(GC)(比值比=5.70,95%置信区间:2.63 - 12.33,P < 0.001)相关。

结论

基于病理特征的ML模型可以提高胃萎缩的诊断一致性,且与内镜下萎缩分级和GC相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda7/10929611/7d842a477b45/fonc-14-1289265-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验