Ma Bowei, Guo Yucheng, Hu Weian, Yuan Fei, Zhu Zhenggang, Yu Yingyan, Zou Hao
Center for Intelligent Medical Imaging & Health, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China.
Tsimage Medical Technology, Yantian Modern Industry Service Center, Shenzhen, China.
Front Pharmacol. 2020 Oct 2;11:572372. doi: 10.3389/fphar.2020.572372. eCollection 2020.
Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. It takes some time from chronic gastritis to develop in GC. Early detection of GC will help patients obtain timely treatment. Understanding disease evolution is crucial for the prevention and treatment of GC. Here, we present a convolutional neural network (CNN)-based system to detect abnormalities in the gastric mucosa. We identified normal mucosa, chronic gastritis, and intestinal-type GC: this is the most common route of gastric carcinogenesis. We integrated digitalizing histopathology of whole-slide images (WSIs), stain normalization, a deep CNN, and a random forest classifier. The staining variability of WSIs was reduced significantly through stain normalization, and saved the cost and time of preparing new slides. Stain normalization improved the effect of the CNN model. The accuracy rate at the patch-level reached 98.4%, and 94.5% for discriminating normal → chronic gastritis → GC. The accuracy rate at the WSIs-level for discriminating normal tissue and cancerous tissue reached 96.0%, which is a state-of-the-art result. Survival analyses indicated that the features extracted from the CNN exerted a significant impact on predicting the survival of cancer patients. Our CNN model disclosed significant potential for adjuvant diagnosis of gastric diseases, especially GC, and usefulness for predicting the prognosis.
胃癌(GC)是全球癌症相关死亡的主要原因之一。从慢性胃炎发展到胃癌需要一定时间。早期发现胃癌将有助于患者获得及时治疗。了解疾病演变对于胃癌的预防和治疗至关重要。在此,我们提出了一种基于卷积神经网络(CNN)的系统来检测胃黏膜异常。我们识别出正常黏膜、慢性胃炎和肠型胃癌:这是胃癌发生的最常见途径。我们整合了全切片图像(WSIs)的数字化组织病理学、染色归一化、深度卷积神经网络和随机森林分类器。通过染色归一化显著降低了WSIs的染色变异性,并节省了制备新切片的成本和时间。染色归一化提高了卷积神经网络模型的效果。在斑块水平上的准确率达到98.4%,区分正常→慢性胃炎→胃癌的准确率为94.5%。在WSIs水平上区分正常组织和癌组织的准确率达到96.0%,这是一个领先的结果。生存分析表明,从卷积神经网络提取的特征对预测癌症患者的生存有显著影响。我们的卷积神经网络模型显示出在辅助诊断胃部疾病,尤其是胃癌方面的巨大潜力,以及对预测预后的有用性。
J Med Imaging (Bellingham). 2017-10
Zhonghua Wai Ke Za Zhi. 2019-12-1
Chin Med Sci J. 2021-9-30
Biomed Inform Insights. 2018-10-31
Front Oncol. 2024-2-27
Bioengineering (Basel). 2023-7-28
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2023-4-25
World J Gastroenterol. 2022-5-28
Inf Process Med Imaging. 2019-6
Front Med (Lausanne). 2019-9-30
Clin Gastroenterol Hepatol. 2020-3
Front Bioeng Biotechnol. 2019-5-15
J Clin Neurosci. 2019-5-31
ACS Synth Biol. 2019-3-15