文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于人工智能的胃黏膜良性或恶性病变的多分类

Artificial Intelligence-Based Multiclass Classification of Benign or Malignant Mucosal Lesions of the Stomach.

作者信息

Ma Bowei, Guo Yucheng, Hu Weian, Yuan Fei, Zhu Zhenggang, Yu Yingyan, Zou Hao

机构信息

Center for Intelligent Medical Imaging & Health, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China.

Tsimage Medical Technology, Yantian Modern Industry Service Center, Shenzhen, China.

出版信息

Front Pharmacol. 2020 Oct 2;11:572372. doi: 10.3389/fphar.2020.572372. eCollection 2020.


DOI:10.3389/fphar.2020.572372
PMID:33132910
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7562716/
Abstract

Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. It takes some time from chronic gastritis to develop in GC. Early detection of GC will help patients obtain timely treatment. Understanding disease evolution is crucial for the prevention and treatment of GC. Here, we present a convolutional neural network (CNN)-based system to detect abnormalities in the gastric mucosa. We identified normal mucosa, chronic gastritis, and intestinal-type GC: this is the most common route of gastric carcinogenesis. We integrated digitalizing histopathology of whole-slide images (WSIs), stain normalization, a deep CNN, and a random forest classifier. The staining variability of WSIs was reduced significantly through stain normalization, and saved the cost and time of preparing new slides. Stain normalization improved the effect of the CNN model. The accuracy rate at the patch-level reached 98.4%, and 94.5% for discriminating normal → chronic gastritis → GC. The accuracy rate at the WSIs-level for discriminating normal tissue and cancerous tissue reached 96.0%, which is a state-of-the-art result. Survival analyses indicated that the features extracted from the CNN exerted a significant impact on predicting the survival of cancer patients. Our CNN model disclosed significant potential for adjuvant diagnosis of gastric diseases, especially GC, and usefulness for predicting the prognosis.

摘要

胃癌(GC)是全球癌症相关死亡的主要原因之一。从慢性胃炎发展到胃癌需要一定时间。早期发现胃癌将有助于患者获得及时治疗。了解疾病演变对于胃癌的预防和治疗至关重要。在此,我们提出了一种基于卷积神经网络(CNN)的系统来检测胃黏膜异常。我们识别出正常黏膜、慢性胃炎和肠型胃癌:这是胃癌发生的最常见途径。我们整合了全切片图像(WSIs)的数字化组织病理学、染色归一化、深度卷积神经网络和随机森林分类器。通过染色归一化显著降低了WSIs的染色变异性,并节省了制备新切片的成本和时间。染色归一化提高了卷积神经网络模型的效果。在斑块水平上的准确率达到98.4%,区分正常→慢性胃炎→胃癌的准确率为94.5%。在WSIs水平上区分正常组织和癌组织的准确率达到96.0%,这是一个领先的结果。生存分析表明,从卷积神经网络提取的特征对预测癌症患者的生存有显著影响。我们的卷积神经网络模型显示出在辅助诊断胃部疾病,尤其是胃癌方面的巨大潜力,以及对预测预后的有用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c798/7562716/a0dd3c4a3dfb/fphar-11-572372-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c798/7562716/4d33ba1142db/fphar-11-572372-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c798/7562716/ab1fef3006c2/fphar-11-572372-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c798/7562716/64ac73f27c22/fphar-11-572372-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c798/7562716/a0dd3c4a3dfb/fphar-11-572372-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c798/7562716/4d33ba1142db/fphar-11-572372-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c798/7562716/ab1fef3006c2/fphar-11-572372-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c798/7562716/64ac73f27c22/fphar-11-572372-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c798/7562716/a0dd3c4a3dfb/fphar-11-572372-g004.jpg

相似文献

[1]
Artificial Intelligence-Based Multiclass Classification of Benign or Malignant Mucosal Lesions of the Stomach.

Front Pharmacol. 2020-10-2

[2]
Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images.

Gastric Cancer. 2018-1-15

[3]
Convolutional neural network for the diagnosis of early gastric cancer based on magnifying narrow band imaging.

Gastric Cancer. 2019-7-22

[4]
Diagnosis of gastric lesions through a deep convolutional neural network.

Dig Endosc. 2021-7

[5]
Stain normalization gives greater generalizability than stain jittering in neural network training for the classification of coeliac disease in duodenal biopsy whole slide images.

J Pathol Inform. 2023-7-19

[6]
Deep Learning-Based Artificial Intelligence System for Automatic Assessment of Glomerular Pathological Findings in Lupus Nephritis.

Diagnostics (Basel). 2021-10-26

[7]
Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images.

J Med Imaging (Bellingham). 2017-10

[8]
[Clinical application of convolutional neural network in pathological diagnosis of metastatic lymph nodes of gastric cancer].

Zhonghua Wai Ke Za Zhi. 2019-12-1

[9]
Histopathological Diagnosis System for Gastritis Using Deep Learning Algorithm.

Chin Med Sci J. 2021-9-30

[10]
Imitating Pathologist Based Assessment With Interpretable and Context Based Neural Network Modeling of Histology Images.

Biomed Inform Insights. 2018-10-31

引用本文的文献

[1]
Application of deep learning models in gastric cancer pathology image analysis: a systematic scoping review.

BMC Cancer. 2025-8-1

[2]
A fully annotated pathology slide dataset for early gastric cancer and precancerous lesions.

Sci Data. 2025-7-30

[3]
Artificial intelligence efficiently predicts gastric lesions, infection and lymph node metastasis upon endoscopic images.

Chin J Cancer Res. 2024-10-30

[4]
Artificial Intelligence for the Automatic Diagnosis of Gastritis: A Systematic Review.

J Clin Med. 2024-8-15

[5]
Artificial intelligence in digital pathology: a systematic review and meta-analysis of diagnostic test accuracy.

NPJ Digit Med. 2024-5-4

[6]
Use of artificial intelligence for the prediction of lymph node metastases in early-stage colorectal cancer: systematic review.

BJS Open. 2024-3-1

[7]
Clinical application of machine learning-based pathomics signature of gastric atrophy.

Front Oncol. 2024-2-27

[8]
Recent Advancements in Deep Learning Using Whole Slide Imaging for Cancer Prognosis.

Bioengineering (Basel). 2023-7-28

[9]
Application of artificial neural network algorithm in pathological diagnosis and prognosis prediction of digestive tract malignant tumors.

Zhejiang Da Xue Xue Bao Yi Xue Ban. 2023-4-25

[10]
Artificial intelligence: Emerging player in the diagnosis and treatment of digestive disease.

World J Gastroenterol. 2022-5-28

本文引用的文献

[1]
Deep Learning Models for Histopathological Classification of Gastric and Colonic Epithelial Tumours.

Sci Rep. 2020-1-30

[2]
Ultrasound Image Representation Learning by Modeling Sonographer Visual Attention.

Inf Process Med Imaging. 2019-6

[3]
Classification and Prognosis Prediction from Histopathological Images of Hepatocellular Carcinoma by a Fully Automated Pipeline Based on Machine Learning.

Ann Surg Oncol. 2020-7

[4]
A High-Performance System for Robust Stain Normalization of Whole-Slide Images in Histopathology.

Front Med (Lausanne). 2019-9-30

[5]
Statistical Analysis of Survival Models Using Feature Quantification on Prostate Cancer Histopathological Images.

J Pathol Inform. 2019-9-27

[6]
Machine Learning-Based Computational Models Derived From Large-Scale Radiographic-Radiomic Images Can Help Predict Adverse Histopathological Status of Gastric Cancer.

Clin Transl Gastroenterol. 2019-10

[7]
Burden of Gastric Cancer.

Clin Gastroenterol Hepatol. 2020-3

[8]
Unsupervised Domain Adaptation for Classification of Histopathology Whole-Slide Images.

Front Bioeng Biotechnol. 2019-5-15

[9]
Automated brain histology classification using machine learning.

J Clin Neurosci. 2019-5-31

[10]
Network-Based Combinatorial CRISPR-Cas9 Screens Identify Synergistic Modules in Human Cells.

ACS Synth Biol. 2019-3-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索