He Lin, Li Menggang, Qiu Longyu, Geng Shuo, Liu Yequn, Tian Fenyang, Luo Mingchuan, Liu Hu, Yu Yongsheng, Yang Weiwei, Guo Shaojun
State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
Nat Commun. 2024 Mar 13;15(1):2290. doi: 10.1038/s41467-024-45874-z.
The precise structural integration of single-atom and high-entropy-alloy features for energy electrocatalysis is highly appealing for energy conversion, yet remains a grand challenge. Herein, we report a class of single-atom Mo-tailored PdPtNiCuZn high-entropy-alloy nanosheets with dilute Pt-Pt ensembles and intrinsic tensile strain (Mo-PdPtNiCuZn) as efficient electrocatalysts for enhancing the methanol oxidation reaction catalysis. The as-made Mo-PdPtNiCuZn delivers an extraordinary mass activity of 24.55 A mg and 11.62 A mg, along with impressive long-term durability. The planted oxophilic Mo single atoms as promoters modify the electronic structure of isolated Pt sites in the high-entropy-alloy host, suppressing the formation of CO adsorbates and steering the reaction towards the formate pathway. Meanwhile, Mo promoters and tensile strain synergistically optimize the adsorption behaviour of intermediates to achieve a more energetically favourable pathway and minimize the methanol oxidation reaction barrier. This work advances the design of atomically precise catalytic sites by creating a new paradigm of single atom-tailored high-entropy alloys, opening an encouraging pathway to the design of CO-tolerance electrocatalysts.
将单原子和高熵合金特性精确结构整合用于能量电催化,对能量转换极具吸引力,但仍是一个巨大挑战。在此,我们报道了一类具有稀Pt-Pt原子簇和固有拉伸应变的单原子Mo定制的PdPtNiCuZn高熵合金纳米片(Mo-PdPtNiCuZn),作为增强甲醇氧化反应催化的高效电催化剂。制备的Mo-PdPtNiCuZn展现出24.55 A mg和11.62 A mg的非凡质量活性,以及令人印象深刻的长期耐久性。作为促进剂的亲氧性Mo单原子修饰了高熵合金主体中孤立Pt位点的电子结构,抑制了CO吸附物的形成,并引导反应走向甲酸盐途径。同时,Mo促进剂和拉伸应变协同优化中间体的吸附行为,以实现能量上更有利的途径,并最小化甲醇氧化反应势垒。这项工作通过创建单原子定制高熵合金的新范式推进了原子精确催化位点的设计,为耐CO电催化剂的设计开辟了一条令人鼓舞的途径。