Suppr超能文献

一种具有微米级硅阳极且无需外部压力即可运行的固态锂离子电池。

A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure.

作者信息

Pan Hui, Wang Lei, Shi Yu, Sheng Chuanchao, Yang Sixie, He Ping, Zhou Haoshen

机构信息

Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.

School of Materials Science and Intelligent Engineering, Nanjing University, Suzhou, 215163, P. R. China.

出版信息

Nat Commun. 2024 Mar 13;15(1):2263. doi: 10.1038/s41467-024-46472-9.

Abstract

Applying high stack pressure (often up to tens of megapascals) to solid-state Li-ion batteries is primarily done to address the issues of internal voids formation and subsequent Li-ion transport blockage within the solid electrode due to volume changes. Whereas, redundant pressurizing devices lower the energy density of batteries and raise the cost. Herein, a mechanical optimization strategy involving elastic electrolyte is proposed for SSBs operating without external pressurizing, but relying solely on the built-in pressure of cells. We combine soft-rigid dual monomer copolymer with deep eutectic mixture to design an elastic solid electrolyte, which exhibits not only high stretchability and deformation recovery capability but also high room-temperature Li-ion conductivity of 2×10S cm and nonflammability. The micron-sized Si anode without additional stack pressure, paired with the elastic electrolyte, exhibits exceptional stability for 300 cycles with 90.8% capacity retention. Furthermore, the solid Li/elastic electrolyte/LiFePO battery delivers 143.3 mAh g after 400 cycles. Finally, the micron-sized Si/elastic electrolyte/LiFePO full cell operates stably for 100 cycles in the absence of any additional pressure, maintaining a capacity retention rate of 98.3%. This significantly advances the practical applications of solid-state batteries.

摘要

对固态锂离子电池施加高堆叠压力(通常高达数十兆帕)主要是为了解决由于体积变化导致的固体电极内部形成空隙以及随后锂离子传输受阻的问题。然而,冗余的加压装置会降低电池的能量密度并增加成本。在此,提出了一种涉及弹性电解质的机械优化策略,用于在无外部加压、仅依靠电池内置压力运行的全固态电池。我们将软硬双单体共聚物与深共晶混合物相结合,设计出一种弹性固体电解质,它不仅具有高拉伸性和变形恢复能力,还具有2×10S cm的高室温锂离子电导率以及不可燃性。无需额外堆叠压力的微米级硅阳极与弹性电解质配对,在300次循环中表现出卓越的稳定性,容量保持率为90.8%。此外,固态锂/弹性电解质/磷酸铁锂电池在400次循环后可提供143.3 mAh g的电量。最后,微米级硅/弹性电解质/磷酸铁锂全电池在无任何额外压力的情况下稳定运行100次循环,容量保持率为98.3%。这显著推动了固态电池的实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eacb/10937906/6a5accbf63c4/41467_2024_46472_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验