Han Dong-Yeob, Han Im Kyung, Kwon Jin Yong, Nam Seoha, Kim Saehyun, Song Youngjin, Kim Yeongseok, Kim Youn Soo, Park Soojin, Ryu Jaegeon
Department of Chemistry and Department of Battery Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
Adv Sci (Weinh). 2025 Jun;12(22):e2417143. doi: 10.1002/advs.202417143. Epub 2025 Apr 16.
Quasi-solid-state batteries (QSSBs) are attracting considerable interest as a promising approach to enhance battery safety and electrochemical performance. However, QSSBs utilizing high-capacity active materials with substantial volume fluctuations, such as Si microparticle (SiMP) anodes and Ni-rich cathodes (NCM811), suffer from unstable interfaces due to contact loss during cycling. Herein, an in situ interlocking electrode-electrolyte (IEE) system is introduced, leveraging covalent crosslinking between acrylate-functionalized interlocking binders on active materials and crosslinkers within the quasi-solid-state electrolyte (QSSE) to establish a robust, interconnected network that maintains stable electrode-electrolyte contact. This IEE system addresses the limitations of liquid electrolyte and QSSE configurations, evidenced by low voltage hysteresis in (de)lithiation peaks over 200 cycles, stable interfacial resistance throughout cycling, and the absence of void formation. A pressure-detecting cell kit further confirms that the IEE system exhibits lower pressure changes during cycling without any voltage fluctuations from contact loss. Moreover, the SiMP||NCM811 full cell with the IEE system demonstrates superior electrochemical performance, and a bi-layer pouch cell configuration achieves an impressive energy density of 403.7 Wh kg/1300 Wh L, withstanding mechanical abuse tests such as folding and cutting, providing new insights into high-energy-density QSSBs.
准固态电池(QSSBs)作为一种增强电池安全性和电化学性能的有前景的方法,正吸引着广泛关注。然而,使用具有大量体积波动的高容量活性材料的准固态电池,如硅微颗粒(SiMP)阳极和富镍阴极(NCM811),由于循环过程中的接触损失,会出现不稳定的界面。在此,引入了一种原位互锁电极-电解质(IEE)系统,利用活性材料上丙烯酸酯功能化互锁粘合剂与准固态电解质(QSSE)中的交联剂之间的共价交联,建立一个坚固的、相互连接的网络,以维持稳定的电极-电解质接触。该IEE系统克服了液体电解质和QSSE配置的局限性,在200多个循环的(脱)锂峰中具有低电压滞后、整个循环过程中稳定的界面电阻以及无空隙形成等证据。一个压力检测电池套件进一步证实,IEE系统在循环过程中表现出较低的压力变化,且没有因接触损失而产生的任何电压波动。此外,并采用IEE系统的SiMP||NCM811全电池表现出优异的电化学性能,双层软包电池配置实现了403.7 Wh kg/1300 Wh L的令人印象深刻的能量密度,能够承受折叠和切割等机械滥用测试,为高能量密度的准固态电池提供了新的见解。