Merck Center for Catalysis at Princeton University, Princeton, NJ, USA.
Discovery Process Research, Janssen Research and Development LLC, Spring House, PA, USA.
Nature. 2024 Apr;628(8007):326-332. doi: 10.1038/s41586-024-07181-x. Epub 2024 Mar 13.
Heteroarenes are ubiquitous motifs in bioactive molecules, conferring favourable physical properties when compared to their arene counterparts. In particular, semisaturated heteroarenes possess attractive solubility properties and a higher fraction of sp carbons, which can improve binding affinity and specificity. However, these desirable structures remain rare owing to limitations in current synthetic methods. Indeed, semisaturated heterocycles are laboriously prepared by means of non-modular fit-for-purpose syntheses, which decrease throughput, limit chemical diversity and preclude their inclusion in many hit-to-lead campaigns. Herein, we describe a more intuitive and modular couple-close approach to build semisaturated ring systems from dual radical precursors. This platform merges metallaphotoredox C(sp)-C(sp) cross-coupling with intramolecular Minisci-type radical cyclization to fuse abundant heteroaryl halides with simple bifunctional feedstocks, which serve as the diradical synthons, to rapidly assemble a variety of spirocyclic, bridged and substituted saturated ring types that would be extremely difficult to make by conventional methods. The broad availability of the requisite feedstock materials allows sampling of regions of underexplored chemical space. Reagent-controlled radical generation leads to a highly regioselective and stereospecific annulation that can be used for the late-stage functionalization of pharmaceutical scaffolds, replacing lengthy de novo syntheses.
杂芳环是生物活性分子中普遍存在的结构单元,与芳环相比,它们具有更有利的物理性质。特别是,部分饱和杂芳环具有吸引人的溶解性质和更高比例的 sp 碳,这可以提高结合亲和力和特异性。然而,由于当前合成方法的限制,这些理想的结构仍然很少见。事实上,部分饱和杂环是通过费力的非模块化专用合成方法制备的,这会降低通量,限制化学多样性,并排除它们在许多从苗头化合物到先导化合物的研究中应用。在此,我们描述了一种更直观和模块化的偶联-接近方法,从双自由基前体制备部分饱和环系统。该平台将金属光氧化还原 C(sp)-C(sp)交叉偶联与分子内 Minisci 型自由基环化结合起来,将丰富的杂芳基卤化物与简单的双功能原料融合在一起,这些原料作为双自由基合成子,快速组装各种螺环、桥环和取代饱和环类型,这些类型用传统方法极难制备。所需原料的广泛可用性允许对化学空间中探索不足的区域进行采样。试剂控制的自由基生成导致高度区域选择性和立体特异性的环化反应,可用于药物支架的后期功能化,取代冗长的从头合成。