文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

全球供应链放大了未来极端高温风险的经济成本。

Global supply chains amplify economic costs of future extreme heat risk.

机构信息

Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China.

Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, China.

出版信息

Nature. 2024 Mar;627(8005):797-804. doi: 10.1038/s41586-024-07147-z. Epub 2024 Mar 13.


DOI:10.1038/s41586-024-07147-z
PMID:38480894
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10972753/
Abstract

Evidence shows a continuing increase in the frequency and severity of global heatwaves, raising concerns about the future impacts of climate change and the associated socioeconomic costs. Here we develop a disaster footprint analytical framework by integrating climate, epidemiological and hybrid input-output and computable general equilibrium global trade models to estimate the midcentury socioeconomic impacts of heat stress. We consider health costs related to heat exposure, the value of heat-induced labour productivity loss and indirect losses due to economic disruptions cascading through supply chains. Here we show that the global annual incremental gross domestic product loss increases exponentially from 0.03 ± 0.01 (SSP 245)-0.05 ± 0.03 (SSP 585) percentage points during 2030-2040 to 0.05 ± 0.01-0.15 ± 0.04 percentage points during 2050-2060. By 2060, the expected global economic losses reach a total of 0.6-4.6% with losses attributed to health loss (37-45%), labour productivity loss (18-37%) and indirect loss (12-43%) under different shared socioeconomic pathways. Small- and medium-sized developing countries suffer disproportionately from higher health loss in South-Central Africa (2.1 to 4.0 times above global average) and labour productivity loss in West Africa and Southeast Asia (2.0-3.3 times above global average). The supply-chain disruption effects are much more widespread with strong hit to those manufacturing-heavy countries such as China and the USA, leading to soaring economic losses of 2.7 ± 0.7% and 1.8 ± 0.5%, respectively.

摘要

证据表明,全球热浪的频率和强度持续增加,这引发了人们对气候变化未来影响以及相关社会经济成本的担忧。在这里,我们通过整合气候、流行病学以及投入产出和可计算一般均衡全球贸易混合模型,开发了一个灾害足迹分析框架,以估计与热应激相关的本世纪中叶社会经济影响。我们考虑了与热暴露相关的健康成本、因热导致的劳动生产力损失的价值以及因经济中断通过供应链蔓延而导致的间接损失。在这里,我们表明,全球年增量国内生产总值损失从 2030-2040 年期间的 0.03±0.01(SSP245)-0.05±0.03(SSP585)个百分点呈指数增长,到 2050-2060 年期间的 0.05±0.01-0.15±0.04 个百分点。到 2060 年,预计全球经济损失将达到 0.6-4.6%,其中健康损失(37-45%)、劳动生产力损失(18-37%)和间接损失(12-43%)占总损失的比例因不同的共享社会经济途径而有所不同。中小发展中国家在中非南部(比全球平均值高 2.1 至 4.0 倍)的健康损失和西非和东南亚的劳动生产力损失(比全球平均值高 2.0-3.3 倍)方面遭受不成比例的更高损失。供应链中断的影响更为广泛,对中国和美国等制造业大国造成严重打击,导致经济损失分别飙升 2.7±0.7%和 1.8±0.5%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/2140ec217f0e/41586_2024_7147_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/52373c7fccf7/41586_2024_7147_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/ab4f42e293bd/41586_2024_7147_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/85c26a434e84/41586_2024_7147_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/dca9d0b8d966/41586_2024_7147_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/f918277a0b1e/41586_2024_7147_Fig5_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/1e19da26191c/41586_2024_7147_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/8e1e1b1c2576/41586_2024_7147_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/100a0aed72b1/41586_2024_7147_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/18d4daae8a7e/41586_2024_7147_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/aecd3b1e2a59/41586_2024_7147_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/0e6341586804/41586_2024_7147_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/dd8b65f083db/41586_2024_7147_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/9bc8afd577b6/41586_2024_7147_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/8953c9f80ffb/41586_2024_7147_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/f17b10dec663/41586_2024_7147_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/2140ec217f0e/41586_2024_7147_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/52373c7fccf7/41586_2024_7147_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/ab4f42e293bd/41586_2024_7147_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/85c26a434e84/41586_2024_7147_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/dca9d0b8d966/41586_2024_7147_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/f918277a0b1e/41586_2024_7147_Fig5_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/1e19da26191c/41586_2024_7147_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/8e1e1b1c2576/41586_2024_7147_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/100a0aed72b1/41586_2024_7147_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/18d4daae8a7e/41586_2024_7147_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/aecd3b1e2a59/41586_2024_7147_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/0e6341586804/41586_2024_7147_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/dd8b65f083db/41586_2024_7147_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/9bc8afd577b6/41586_2024_7147_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/8953c9f80ffb/41586_2024_7147_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/f17b10dec663/41586_2024_7147_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf52/10972753/2140ec217f0e/41586_2024_7147_Fig16_ESM.jpg

相似文献

[1]
Global supply chains amplify economic costs of future extreme heat risk.

Nature. 2024-3

[2]
Labour productivity and economic impacts of carbon mitigation: a modelling study and benefit-cost analysis.

Lancet Planet Health. 2022-12

[3]
The Minderoo-Monaco Commission on Plastics and Human Health.

Ann Glob Health. 2023

[4]
COVID-19 and Global Supply Chain Configuration: Economic and Emissions Impacts of Australia-China Trade Disruptions.

Front Public Health. 2021

[5]
Effects of climate change on combined labour productivity and supply: an empirical, multi-model study.

Lancet Planet Health. 2021-7

[6]
Enhanced economic connectivity to foster heat stress-related losses.

Sci Adv. 2016-6-10

[7]
Occupational heat stress and economic burden: A review of global evidence.

Environ Res. 2021-4

[8]
Estimating population heat exposure and impacts on working people in conjunction with climate change.

Int J Biometeorol. 2017-8-1

[9]
Exposure to excessive heat and impacts on labour productivity linked to cumulative CO emissions.

Sci Rep. 2019-9-23

[10]
Health and Economic Outcomes Associated With Musculoskeletal Disorders Attributable to High Body Mass Index in 192 Countries and Territories in 2019.

JAMA Netw Open. 2023-1-3

引用本文的文献

[1]
Superdurable, Flexible Ceramic Nanofibers for Sustainable Passive Radiative Cooling.

ACS Nano. 2025-8-12

[2]
Industrial robots reduce carbon emissions in manufacturing through global value chains.

Sci Rep. 2025-7-29

[3]
A 3.5-fold increase in the synchrony of extreme precipitation and temperature events across China from 1930 to 2022.

Sci Rep. 2025-7-28

[4]
Frequent land-ocean transboundary migration of tropical heatwaves under climate change.

Nat Commun. 2025-4-10

[5]
Daily Max Simplified Wet-Bulb Globe Temperature and its Climate Networks for Teleconnection Study, 1940-2022.

Sci Data. 2025-4-7

[6]
A global high-resolution and bias-corrected dataset of CMIP6 projected heat stress metrics.

Sci Data. 2025-2-12

[7]
Inequitable distribution of risks associated with occupational heat exposure driven by trade.

Nat Commun. 2025-1-9

[8]
A dataset of income distribution on provincial, urban, and rural levels for China from 2020 to 2100.

Sci Data. 2024-12-27

[9]
Synergetic strategies for carbon neutrality and clean air.

Environ Sci Ecotechnol. 2024-10-15

[10]
A New, Zero-Iteration Analytic Implementation of Wet-Bulb Globe Temperature: Development, Validation, and Comparison With Other Methods.

Geohealth. 2024-9-29

本文引用的文献

[1]
Globally unequal effect of extreme heat on economic growth.

Sci Adv. 2022-10-28

[2]
Increased labor losses and decreased adaptation potential in a warmer world.

Nat Commun. 2021-12-14

[3]
Air-conditioning and the adaptation cooling deficit in emerging economies.

Nat Commun. 2021-11-9

[4]
The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future.

Lancet. 2021-10-30

[5]
Current and projected regional economic impacts of heatwaves in Europe.

Nat Commun. 2021-10-4

[6]
Occupational heat stress and economic burden: A review of global evidence.

Environ Res. 2021-4

[7]
The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises.

Lancet. 2021-1-9

[8]
The 2020 China report of the Lancet Countdown on health and climate change.

Lancet Public Health. 2021-1

[9]
Pricing the global health risks of the COVID-19 pandemic.

J Risk Uncertain. 2020

[10]
Air Conditioning and Heat-related Mortality: A Multi-country Longitudinal Study.

Epidemiology. 2020-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索