Proc Natl Acad Sci U S A. 2022 Aug 16;119(33):e2201062119. doi: 10.1073/pnas.2201062119. Epub 2022 Aug 8.
Following their success in numerous imaging and computer vision applications, deep-learning (DL) techniques have emerged as one of the most prominent strategies for accelerated MRI reconstruction. These methods have been shown to outperform conventional regularized methods based on compressed sensing (CS). However, in most comparisons, CS is implemented with two or three hand-tuned parameters, while DL methods enjoy a plethora of advanced data science tools. In this work, we revisit [Formula: see text]-wavelet CS reconstruction using these modern tools. Using ideas such as algorithm unrolling and advanced optimization methods over large databases that DL algorithms utilize, along with conventional insights from wavelet representations and CS theory, we show that [Formula: see text]-wavelet CS can be fine-tuned to a level close to DL reconstruction for accelerated MRI. The optimized [Formula: see text]-wavelet CS method uses only 128 parameters compared to >500,000 for DL, employs a convex reconstruction at inference time, and performs within <1% of a DL approach that has been used in multiple studies in terms of quantitative quality metrics.
在成功应用于众多医学成像和计算机视觉领域之后,深度学习(DL)技术已成为加速磁共振成像重建的最主要策略之一。这些方法已被证明优于基于压缩感知(CS)的传统正则化方法。然而,在大多数比较中,CS 采用了两到三个手工调整的参数,而 DL 方法则可以利用大量先进的数据科学工具。在这项工作中,我们重新审视了使用这些现代工具的[Formula: see text]-小波 CS 重建。我们利用了 DL 算法所使用的算法展开和大数据集上的高级优化方法等思想,以及来自小波表示和 CS 理论的传统见解,表明[Formula: see text]-小波 CS 可以针对加速 MRI 进行微调,达到接近 DL 重建的水平。与 DL 相比,优化后的[Formula: see text]-小波 CS 方法仅使用 128 个参数,而在推断时采用凸重建,并在定量质量指标方面,接近已在多个研究中使用的 DL 方法,性能仅相差<1%。