Suppr超能文献

定量 CT 和纤维化间质性肺疾病的机器学习分类。

Quantitative CT and machine learning classification of fibrotic interstitial lung diseases.

机构信息

Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.

Mayo Clinic Alix School of Medicine, Mayo Clinic, Jacksonville, FL, USA.

出版信息

Eur Radiol. 2022 Dec;32(12):8152-8161. doi: 10.1007/s00330-022-08875-4. Epub 2022 Jun 9.

Abstract

OBJECTIVES

To evaluate quantitative computed tomography (QCT) features and QCT feature-based machine learning (ML) models in classifying interstitial lung diseases (ILDs). To compare QCT-ML and deep learning (DL) models' performance.

METHODS

We retrospectively identified 1085 patients with pathologically proven usual interstitial pneumonitis (UIP), nonspecific interstitial pneumonitis (NSIP), and chronic hypersensitivity pneumonitis (CHP) who underwent peri-biopsy chest CT. Kruskal-Wallis test evaluated QCT feature associations with each ILD. QCT features, patient demographics, and pulmonary function test (PFT) results trained eXtreme Gradient Boosting (training/validation set n = 911) yielding 3 models: M1 = QCT features only; M2 = M1 plus age and sex; M3 = M2 plus PFT results. A DL model was also developed. ML and DL model areas under the receiver operating characteristic curve (AUC) and 95% confidence intervals (CIs) were compared for multiclass (UIP vs. NSIP vs. CHP) and binary (UIP vs. non-UIP) classification performances.

RESULTS

The majority (69/78 [88%]) of QCT features successfully differentiated the 3 ILDs (adjusted p ≤ 0.05). All QCT-ML models achieved higher AUC than the DL model (multiclass AUC micro-averages 0.910, 0.910, 0.925, and 0.798 and macro-averages 0.895, 0.893, 0.925, and 0.779 for M1, M2, M3, and DL respectively; binary AUC 0.880, 0.899, 0.898, and 0.869 for M1, M2, M3, and DL respectively). M3 demonstrated statistically significant better performance compared to M2 (∆AUC: 0.015, CI: [0.002, 0.029]) for multiclass prediction.

CONCLUSIONS

QCT features successfully differentiated pathologically proven UIP, NSIP, and CHP. While QCT-based ML models outperformed a DL model for classifying ILDs, further investigations are warranted to determine if QCT-ML, DL, or a combination will be superior in ILD classification.

KEY POINTS

• Quantitative CT features successfully differentiated pathologically proven UIP, NSIP, and CHP. • Our quantitative CT-based machine learning models demonstrated high performance in classifying UIP, NSIP, and CHP histopathology, outperforming a deep learning model. • While our quantitative CT-based machine learning models performed better than a DL model, additional investigations are needed to determine whether either or a combination of both approaches delivers superior diagnostic performance.

摘要

目的

评估定量计算机断层扫描(QCT)特征和基于 QCT 的机器学习(ML)模型在间质性肺病(ILDs)分类中的应用。比较 QCT-ML 和深度学习(DL)模型的性能。

方法

我们回顾性地确定了 1085 名经病理证实的特发性间质性肺炎(UIP)、非特异性间质性肺炎(NSIP)和慢性过敏性肺炎(CHP)患者,这些患者在活检前均进行了胸部 CT 检查。Kruskal-Wallis 检验评估了 QCT 特征与每种 ILD 的相关性。QCT 特征、患者人口统计学特征和肺功能测试(PFT)结果用于训练极端梯度提升(训练/验证集 n = 911),产生 3 个模型:M1 = QCT 特征仅;M2 = M1 加年龄和性别;M3 = M2 加 PFT 结果。还开发了一个 DL 模型。比较了 ML 和 DL 模型的受试者工作特征曲线(ROC)下面积(AUC)和 95%置信区间(CI),用于多类(UIP 与 NSIP 与 CHP)和双类(UIP 与非 UIP)分类性能。

结果

大多数(69/78 [88%])QCT 特征成功地区分了 3 种 ILD(调整后的 p ≤ 0.05)。所有 QCT-ML 模型的 AUC 均高于 DL 模型(多类 AUC 微观平均值 0.910、0.910、0.925 和 0.798 以及宏观平均值 0.895、0.893、0.925 和 0.779 分别为 M1、M2、M3 和 DL;二进制 AUC 0.880、0.899、0.898 和 0.869 分别为 M1、M2、M3 和 DL)。与 M2 相比,M3 在多类预测中表现出统计学上显著更好的性能(∆AUC:0.015,CI:[0.002,0.029])。

结论

QCT 特征成功地区分了病理证实的 UIP、NSIP 和 CHP。虽然基于 QCT 的 ML 模型在分类 ILD 方面优于 DL 模型,但需要进一步研究以确定 QCT-ML、DL 或两者的组合是否在 ILD 分类中具有优势。

要点

• QCT 特征成功地区分了病理证实的 UIP、NSIP 和 CHP。• 我们基于 QCT 的机器学习模型在 UIP、NSIP 和 CHP 组织病理学分类中表现出了很高的性能,优于深度学习模型。• 虽然我们基于 QCT 的机器学习模型的性能优于 DL 模型,但需要进一步研究,以确定哪种方法或两者的组合在诊断性能方面更优。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验