IEEE Trans Med Imaging. 2022 Apr;41(4):1000-1003. doi: 10.1109/TMI.2022.3157048.
We had released MoNuSAC2020 as one of the largest publicly available, manually annotated, curated, multi-class, and multi-instance medical image segmentation datasets. Based on this dataset, we had organized a challenge at the International Symposium on Biomedical Imaging (ISBI) 2020. Along with the challenge participants, we had published an article summarizing the results and findings of the challenge (Verma et al., 2021). Foucart et al. (2022) in their "Analysis of the MoNuSAC 2020 challenge evaluation and results: metric implementation errors" have pointed ways in which the computation of the segmentation performance metric for the challenge can be corrected or improved. After a careful examination of their analysis, we have found a small bug in our code and an erroneous column-header swap in one of our result tables. Here, we present our response to their analysis, and issue an errata. After fixing the bug the challenge rankings remain largely unaffected. On the other hand, two of Foucart et al.'s other suggestions are good for future consideration, but it is not clear that those should be immediately implemented. We thank Foucart et al. for their detailed analysis to help us fix the two errors.
我们发布了 MoNuSAC2020,这是最大的公开可用的、手动注释的、精心策划的、多类别和多实例的医学图像分割数据集之一。基于这个数据集,我们在 2020 年的国际生物医学成像研讨会(ISBI)上组织了一场挑战赛。我们与挑战赛参与者一起发表了一篇文章,总结了挑战赛的结果和发现(Verma 等人,2021 年)。Foucart 等人(2022 年)在他们的“MoNuSAC 2020 挑战赛评估和结果分析:度量实施错误”中指出了可以纠正或改进挑战赛分割性能度量计算的方法。在仔细检查了他们的分析之后,我们发现了我们代码中的一个小错误,以及我们的一个结果表中的一个错误列标题交换。在这里,我们对他们的分析做出回应,并发布勘误表。修复错误后,挑战赛排名基本没有受到影响。另一方面,Foucart 等人的另外两个建议对未来的考虑是有好处的,但不清楚是否应该立即实施。我们感谢 Foucart 等人的详细分析,帮助我们纠正了这两个错误。