Legouis David, Rinaldi Anna, Malpetti Daniele, Arnoux Gregoire, Verissimo Thomas, Faivre Anna, Mangili Francesca, Rinaldi Andrea, Ruinelli Lorenzo, Pugin Jerome, Moll Solange, Clivio Luca, Bolis Marco, de Seigneux Sophie, Azzimonti Laura, Cippà Pietro E
Division of Intensive Care, Department of Acute Medicine, University Hospital of Geneva, 1205 Geneva, Switzerland.
Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, 1205 Geneva, Switzerland.
iScience. 2024 Feb 22;27(3):109271. doi: 10.1016/j.isci.2024.109271. eCollection 2024 Mar 15.
The application of single-cell technologies in clinical nephrology remains elusive. We generated an atlas of transcriptionally defined cell types and cell states of human kidney disease by integrating single-cell signatures reported in the literature with newly generated signatures obtained from 5 patients with acute kidney injury. We used this information to develop kidney-specific cell-level information ExtractoR (K-CLIER), a transfer learning approach specifically tailored to evaluate the role of cell types/states on bulk RNAseq data. We validated the K-CLIER as a reliable computational framework to obtain a dimensionality reduction and to link clinical data with single-cell signatures. By applying K-CLIER on cohorts of patients with different kidney diseases, we identified the most relevant cell types associated with fibrosis and disease progression. This analysis highlighted the central role of altered proximal tubule cells in chronic kidney disease. Our study introduces a new strategy to exploit the power of single-cell technologies toward clinical applications.
单细胞技术在临床肾脏病学中的应用仍不明确。我们通过整合文献中报道的单细胞特征与从5例急性肾损伤患者中获得的新生成特征,生成了一份人类肾脏疾病转录定义的细胞类型和细胞状态图谱。我们利用这些信息开发了肾脏特异性细胞水平信息提取器(K-CLIER),这是一种专门为评估细胞类型/状态对批量RNA测序数据的作用而定制的迁移学习方法。我们验证了K-CLIER作为一个可靠的计算框架,可用于降维和将临床数据与单细胞特征相联系。通过将K-CLIER应用于不同肾脏疾病患者队列,我们确定了与纤维化和疾病进展相关的最相关细胞类型。该分析突出了近端小管细胞改变在慢性肾脏病中的核心作用。我们的研究引入了一种新策略,以利用单细胞技术的力量推动临床应用。