Suppr超能文献

不同界面的YFeO上NiFe纳米条带的磁振子辅助磁化反转

Magnon-Assisted Magnetization Reversal of NiFe Nanostripes on YFeO with Different Interfaces.

作者信息

Mucchietto Andrea, Baumgaertl Korbinian, Grundler Dirk

机构信息

Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

Institute of Electrical and Micro Engineering (IEM), 'Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

出版信息

ACS Nano. 2024 Mar 26;18(12):8641-8648. doi: 10.1021/acsnano.3c06353. Epub 2024 Mar 15.

Abstract

Magnetic bit writing by short-wave magnons without conversion to the electrical domain is expected to be a game-changer for in-memory computing architectures. Recently, the reversal of nanomagnets by propagating magnons was demonstrated. However, experiments have not yet explored different wavelengths and the nonlinear excitation regime of magnons required for computational tasks. We report on the magnetization reversal of individual 20 nm thick NiFe (Py) nanostripes integrated onto 113 nm thick yttrium iron garnet (YIG). We suppress direct interlayer exchange coupling by an intermediate layer, such as Cu and SiO. By exciting magnons in YIG with wavelengths λ down to 148 nm we observe the reversal of the integrated ferromagnets in a small external field of 14 mT. Magnons with a small wavelength of λ = 195 nm, i.e., twice the width of the Py nanostripes, induced the reversal at a spin-precessional power of only about 1 nW after propagating over 15 μm in YIG. Such small power value has not been reported so far. Considerations based on dynamic dipolar coupling explain the observed wavelength dependence of the magnon-induced reversal efficiency. For an increased power, the stripes reversed in an external field of only about 1 mT. Our findings are important for the practical implementation of nonvolatile storage of broadband magnon signals in YIG by means of bistable nanomagnets without the need of an appreciable global magnetic field.

摘要

通过短波磁振子进行磁比特写入而无需转换到电域,有望成为内存计算架构的一个变革因素。最近,已经证明了通过传播磁振子使纳米磁体反转。然而,实验尚未探索计算任务所需的磁振子的不同波长和非线性激发区域。我们报告了集成在113nm厚钇铁石榴石(YIG)上的单个20nm厚镍铁(Py)纳米条带的磁化反转情况。我们通过诸如铜和二氧化硅等中间层抑制直接层间交换耦合。通过用低至148nm波长的磁振子激发YIG中的磁振子,我们在14mT的小外部磁场中观察到集成铁磁体的反转。波长为λ = 195nm的小磁振子,即Py纳米条带宽度的两倍,在YIG中传播15μm后,仅在约1nW的自旋进动功率下就引起了反转。到目前为止,尚未报道过如此小的功率值。基于动态偶极耦合的考虑解释了观察到的磁振子诱导反转效率的波长依赖性。对于增加的功率,条带在仅约1mT的外部磁场中反转。我们的发现对于通过双稳态纳米磁体在YIG中实际实现宽带磁振子信号的非易失性存储非常重要,而无需可观的全局磁场。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab3d/10976964/09bc7a4b390f/nn3c06353_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验