Suppr超能文献

利用非线性自旋波干涉的纳米级神经网络。

Nanoscale neural network using non-linear spin-wave interference.

作者信息

Papp Ádám, Porod Wolfgang, Csaba Gyorgy

机构信息

Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.

Center for Nano Science and Technology University of Notre Dame (NDnano), Notre Dame, IN, USA.

出版信息

Nat Commun. 2021 Nov 5;12(1):6422. doi: 10.1038/s41467-021-26711-z.

Abstract

We demonstrate the design of a neural network hardware, where all neuromorphic computing functions, including signal routing and nonlinear activation are performed by spin-wave propagation and interference. Weights and interconnections of the network are realized by a magnetic-field pattern that is applied on the spin-wave propagating substrate and scatters the spin waves. The interference of the scattered waves creates a mapping between the wave sources and detectors. Training the neural network is equivalent to finding the field pattern that realizes the desired input-output mapping. A custom-built micromagnetic solver, based on the Pytorch machine learning framework, is used to inverse-design the scatterer. We show that the behavior of spin waves transitions from linear to nonlinear interference at high intensities and that its computational power greatly increases in the nonlinear regime. We envision small-scale, compact and low-power neural networks that perform their entire function in the spin-wave domain.

摘要

我们展示了一种神经网络硬件的设计,其中所有神经形态计算功能,包括信号路由和非线性激活,均由自旋波传播和干涉来执行。网络的权重和互连通过施加在自旋波传播基板上并散射自旋波的磁场模式来实现。散射波的干涉在波源和探测器之间创建了一种映射。训练神经网络等同于找到实现所需输入 - 输出映射的场模式。基于Pytorch机器学习框架定制的微磁求解器用于反向设计散射体。我们表明,自旋波在高强度下从线性干涉转变为非线性干涉,并且其计算能力在非线性区域大大增加。我们设想了在自旋波域中执行其全部功能的小规模、紧凑且低功耗的神经网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dea6/8571280/a108e7ae07f8/41467_2021_26711_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验