Joint Research Centre (JRC), European Commission, Via Enrico Fermi 2749, Ispra, 21027, Italy.
Joint Research Centre (JRC), European Commission, Via Enrico Fermi 2749, Ispra, 21027, Italy; London School of Hygiene & Tropical Medicine, University of London, Keppel Street, London, WC1E 7HT, United Kingdom.
Math Biosci. 2024 May;371:109178. doi: 10.1016/j.mbs.2024.109178. Epub 2024 Mar 13.
Interactions between SARS-CoV-2 and the immune system during infection are complex. However, understanding the within-host SARS-CoV-2 dynamics is of enormous importance for clinical and public health outcomes. Current mathematical models focus on describing the within-host SARS-CoV-2 dynamics during the acute infection phase. Thereby they ignore important long-term post-acute infection effects. We present a mathematical model, which not only describes the SARS-CoV-2 infection dynamics during the acute infection phase, but extends current approaches by also recapitulating clinically observed long-term post-acute infection effects, such as the recovery of the number of susceptible epithelial cells to an initial pre-infection homeostatic level, a permanent and full clearance of the infection within the individual, immune waning, and the formation of long-term immune capacity levels after infection. Finally, we used our model and its description of the long-term post-acute infection dynamics to explore reinfection scenarios differentiating between distinct variant-specific properties of the reinfecting virus. Together, the model's ability to describe not only the acute but also the long-term post-acute infection dynamics provides a more realistic description of key outcomes and allows for its application in clinical and public health scenarios.
SARS-CoV-2 与免疫系统在感染过程中的相互作用非常复杂。然而,了解宿主内 SARS-CoV-2 的动态对于临床和公共卫生结果至关重要。目前的数学模型主要侧重于描述急性感染阶段宿主内 SARS-CoV-2 的动态。因此,它们忽略了重要的急性后期感染后长期影响。我们提出了一个数学模型,它不仅描述了急性感染阶段的 SARS-CoV-2 感染动态,而且通过再现临床上观察到的长期急性后期感染后效应,扩展了当前的方法,例如恢复易感性上皮细胞数量到初始感染前的稳态水平、个体内感染的永久性和完全清除、免疫衰减以及感染后形成长期免疫能力水平。最后,我们使用我们的模型及其对长期急性后期感染动态的描述,探讨了再感染情况,区分了再感染病毒的不同变体特异性特性。总之,该模型不仅能够描述急性感染,还能够描述急性后期感染动态,为关键结果提供了更现实的描述,并允许将其应用于临床和公共卫生场景。