Luke Rayanne A, Bedekar Prajakta, Muehling Lyndsey M, Canderan Glenda, Lee Yesun, Cheng Wesley A, Woodfolk Judith A, Wilson Jeffrey M, Pannaraj Pia S, Kearsley Anthony J
Department of Mathematical Sciences, George Mason University, Fairfax, Virginia, 22030, USA.
Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, USA.
ArXiv. 2025 Aug 4:arXiv:2507.10793v2.
Understanding dynamics of antibody levels is crucial for characterizing time-dependent response to immune events: either infections or vaccinations. The sequence and timing of these events significantly influence antibody level changes. Despite extensive interest in the recent years and many experimental studies, the effect of immune event sequences on antibody levels is not well understood. Moreover, disease or vaccination prevalence in the population are time-dependent. This, alongside the complexities of personal antibody kinetics, makes it arduous to analyze a sample immune measurement from a population. A rigorous mathematical characterization can inform public health decision making.
A key result of this paper is an antibody response modeling framework for an arbitrary number of multiclass immune events-the first of its kind to the best of our knowledge. Our model is ideal for characterizing immune event sequences, referred to as personal trajectories. To illustrate our ideas, we apply our mathematical framework to longitudinal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) data from individuals with multiple documented infection and vaccination events. This approach is fully generalizable to other diseases that exhibit waning immunity, such as influenza, respiratory syncytial virus (RSV), and pertussis. Our work is an important step towards a comprehensive understanding of antibody kinetics for infectious diseases that could lead to an effective way to analyze the protective power of natural immunity or vaccination, predict missed immune events at an individual level, and inform booster timing recommendations.
We design a rigorous mathematical characterization in terms of a time-inhomogeneous Markov chain model for event-to-event transitions coupled with a probabilistic framework for the post-event antibody kinetics of multiple immune events. Probabilistic models appropriately describe these measurements as they capture the natural variability in a population's antibody response. We build probability density models for population response since the emergence of a disease via a discrete convolution of immune state transmission probabilities and personal response models, repeatedly invoking the definition of conditional probability and the law of total probability. Importantly, our coupled framework simultaneously tracks immune state and antibody response. This novel modeling approach surpasses the susceptible-infected-recovered (SIR) characterizations by rigorously tracing the probability distribution of population antibody response across time.
了解抗体水平的动态变化对于刻画对免疫事件(感染或疫苗接种)的时间依赖性反应至关重要。这些事件的顺序和时间会显著影响抗体水平的变化。尽管近年来人们对此兴趣浓厚且进行了许多实验研究,但免疫事件顺序对抗体水平的影响仍未得到很好的理解。此外,人群中的疾病或疫苗接种流行率是随时间变化的。这与个人抗体动力学的复杂性一起,使得分析来自人群的样本免疫测量结果变得艰巨。严格的数学刻画可为公共卫生决策提供依据。
本文的一个关键成果是一个针对任意数量的多类免疫事件的抗体反应建模框架——据我们所知,这是同类中的首个此类框架。我们的模型非常适合刻画免疫事件序列,即个人轨迹。为了阐述我们的想法,我们将数学框架应用于来自有多次记录的感染和疫苗接种事件的个体的纵向严重急性呼吸综合征冠状病毒2(SARS-CoV-2)数据。这种方法完全可推广到其他表现出免疫衰退的疾病,如流感、呼吸道合胞病毒(RSV)和百日咳。我们的工作是朝着全面理解传染病抗体动力学迈出的重要一步,这可能会带来一种有效的方法来分析自然免疫或疫苗接种的保护力,预测个体层面错过的免疫事件,并为加强针接种时间建议提供依据。
我们根据一个用于事件到事件转换的非齐次马尔可夫链模型以及一个用于多个免疫事件的事件后抗体动力学的概率框架设计了一种严格的数学刻画。概率模型通过捕捉人群抗体反应中的自然变异性来恰当地描述这些测量结果。我们通过免疫状态传播概率和个人反应模型的离散卷积为疾病出现以来的人群反应构建概率密度模型,反复调用条件概率的定义和全概率定律。重要的是,我们的耦合框架同时跟踪免疫状态和抗体反应。这种新颖的建模方法通过严格追踪人群抗体反应随时间的概率分布,超越了易感-感染-恢复(SIR)刻画。