Suppr超能文献

层次仿生支架具有各向异性的微孔和纳米拓扑图案,通过几何调节促进骨再生。

Hierarchically Biomimetic Scaffolds with Anisotropic Micropores and Nanotopological Patterns to Promote Bone Regeneration via Geometric Modulation.

机构信息

College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.

Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, P. R. China.

出版信息

Adv Healthc Mater. 2024 Jul;13(17):e2304178. doi: 10.1002/adhm.202304178. Epub 2024 Mar 22.

Abstract

Structural engineering is an appealing means to modulate osteogenesis without the intervention of exogenous cells or therapeutic agents. In this work, a novel 3D scaffold with anisotropic micropores and nanotopographical patterns is developed. Scaffolds with oriented pores are fabricated via the selective extraction of water-soluble polyethylene oxide from its poly(ε-caprolactone) co-continuous mixture and uniaxial stretching. The plate apatite-like lamellae are subsequently hatched on the pore walls through surface-induced epitaxial crystallization. Such a unique geometric architecture yields a synergistic effect on the osteogenic capability. The prepared scaffold leads to a 19.2% and 128.0% increase in the alkaline phosphatase activity of rat bone mesenchymal stem cells compared to that of the scaffolds with only oriented pores and only nanotopographical patterns, respectively. It also induces the greatest upregulation of osteogenic-related gene expression in vitro. The cranial defect repair results demonstrate that the prepared scaffold effectively promotes new bone regeneration, as indicated by a 350% increase in collagen I expression in vivo compared to the isotropic porous scaffold without surface nanotopology after implantation for 14 weeks. Overall, this work provides geometric motifs for the transduction of biophysical cues in 3D porous scaffolds, which is a promising option for tissue engineering applications.

摘要

结构工程是一种有吸引力的方法,可以在不干预外源性细胞或治疗剂的情况下调节成骨作用。在这项工作中,开发了一种具有各向异性微孔和纳米形貌的新型 3D 支架。通过从其聚(ε-己内酯)共连续混合物中选择性提取水溶性聚乙烯氧化物并进行单轴拉伸来制造具有定向孔的支架。随后,通过表面诱导外延结晶在孔壁上孵化板状磷灰石状薄片。这种独特的几何结构对成骨能力产生协同效应。与仅具有定向孔和仅具有纳米形貌的支架相比,所制备的支架可使大鼠骨髓间充质干细胞的碱性磷酸酶活性分别提高 19.2%和 128.0%。它还在体外诱导了最大的成骨相关基因表达上调。颅骨缺损修复结果表明,与没有表面纳米拓扑结构的各向同性多孔支架相比,在植入 14 周后,体内胶原蛋白 I 表达增加了 350%,所制备的支架有效地促进了新骨再生。总的来说,这项工作为 3D 多孔支架中生物物理线索的转导提供了几何图案,这是组织工程应用的一种有前途的选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验