利用新指标预测代谢功能障碍相关脂肪性肝病(MAFLD):基于全国健康和营养调查数据库的分析。
Using new indices to predict metabolism dysfunction-associated fatty liver disease (MAFLD): analysis of the national health and nutrition examination survey database.
机构信息
Department of Gastroenterology, Guangzhou Red Cross Hospital(Guangzhou Red Cross Hospital of Jinan University), Jinan University, Guangzhou, China.
Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China.
出版信息
BMC Gastroenterol. 2024 Mar 15;24(1):109. doi: 10.1186/s12876-024-03190-2.
BACKGROUND
Metabolism dysfunction-associated fatty liver disease (MAFLD), is the most common chronic liver disease. Few MAFLD predictions are simple and accurate. We examined the predictive performance of the albumin-to-glutamyl transpeptidase ratio (AGTR), plasma atherogenicity index (AIP), and serum uric acid to high-density lipoprotein cholesterol ratio (UHR) for MAFLD to design practical, inexpensive, and reliable models.
METHODS
The National Health and Nutrition Examination Survey (NHANES) 2007-2016 cycle dataset, which contained 12,654 participants, was filtered and randomly separated into internal validation and training sets. This study examined the relationships of the AGTR and AIP with MAFLD using binary multifactor logistic regression. We then created a MAFLD predictive model using the training dataset and validated the predictive model performance with the 2017-2018 NHANES and internal datasets.
RESULTS
In the total population, the predictive ability (AUC) of the AIP, AGTR, UHR, and the combination of all three for MAFLD showed in the following order: 0.749, 0.773, 0.728 and 0.824. Further subgroup analysis showed that the AGTR (AUC1 = 0.796; AUC2 = 0.690) and the combination of the three measures (AUC1 = 0.863; AUC2 = 0.766) better predicted MAFLD in nondiabetic patients. Joint prediction outperformed the individual measures in predicting MAFLD in the subgroups. Additionally, the model better predicted female MAFLD. Adding waist circumference and or BMI to this model improves predictive performance.
CONCLUSION
Our study showed that the AGTR, AIP, and UHR had strong MAFLD predictive value, and their combination can increase MAFLD predictive performance. They also performed better in females.
背景
代谢相关脂肪性肝病(MAFLD)是最常见的慢性肝病。目前,MAFLD 的预测方法并不简单且准确。本研究旨在通过检测白蛋白-谷氨酰转肽酶比值(AGTR)、血浆致动脉粥样硬化指数(AIP)和血清尿酸与高密度脂蛋白胆固醇比值(UHR)对 MAFLD 的预测性能,构建实用、经济、可靠的模型。
方法
本研究纳入了包含 12654 名参与者的 2007-2016 年全国健康和营养调查(NHANES)数据集,并对其进行了过滤和随机分组,分为内部验证集和训练集。采用二项多因素逻辑回归分析 AGTR 和 AIP 与 MAFLD 的相关性。随后,我们利用训练数据集构建 MAFLD 预测模型,并利用 2017-2018 年 NHANES 数据和内部数据集对预测模型的性能进行验证。
结果
在总人群中,AIP、AGTR、UHR 及三者联合对 MAFLD 的预测能力(AUC)依次为 0.749、0.773、0.728 和 0.824。进一步的亚组分析显示,AGTR(AUC1=0.796;AUC2=0.690)和三者联合(AUC1=0.863;AUC2=0.766)对非糖尿病患者 MAFLD 的预测效果更好。在亚组中,联合预测的效果优于单项指标。此外,该模型对女性 MAFLD 的预测效果更好。将腰围和(或)BMI 加入该模型可提高预测性能。
结论
本研究表明,AGTR、AIP 和 UHR 对 MAFLD 具有较强的预测价值,三者联合可提高 MAFLD 的预测效能,且对女性的预测效果更好。