Center for Digital Health and Social Innovation, St. Pölten University of Applied Sciences, Campus-Platz 1, St. Pölten, 3100, Austria; Institute of Health Sciences, St. Pölten University of Applied Sciences, Campus-Platz 1, St. Pölten, 3100, Austria.
Center for Digital Health and Social Innovation, St. Pölten University of Applied Sciences, Campus-Platz 1, St. Pölten, 3100, Austria.
J Biomech. 2024 Mar;166:112049. doi: 10.1016/j.jbiomech.2024.112049. Epub 2024 Mar 13.
Markerless motion capture has recently attracted significant interest in clinical gait analysis and human movement science. Its ease of use and potential to streamline motion capture recordings bear great potential for out-of-the-laboratory measurements in large cohorts. While previous studies have shown that markerless systems can achieve acceptable accuracy and reliability for kinematic parameters of gait, they also noted higher inter-trial variability of markerless data. Since increased inter-trial variability can have important implications for data post-processing and analysis, this study compared the inter-trial variability of simultaneously recorded markerless and marker-based data. For this purpose, the data of 18 healthy volunteers were used who were instructed to simulate four different gait patterns: physiological, crouch, circumduction, and equinus gait. Gait analysis was performed using the smartphone-based markerless system OpenCap and a marker-based motion capture system. We compared the inter-trial variability of both systems and also evaluated if changes in inter-trial variability may depend on the analyzed gait pattern. Compared to the marker-based data, we observed an increase of inter-trial variability for the markerless system ranging from 6.6% to 22.0% for the different gait patterns. Our findings demonstrate that the markerless pose estimation pipelines can introduce additionally variability in the kinematic data across different gait patterns and levels of natural variability. We recommend using averaged waveforms rather than single ones to mitigate this problem. Further, caution is advised when using variability-based metrics in gait and human movement analysis based on markerless data as increased inter-trial variability can lead to misleading results.
无标记运动捕捉技术最近在临床步态分析和人类运动科学领域引起了广泛关注。它易于使用且有可能简化运动捕捉记录,因此非常适合在大样本中进行实验室外测量。虽然先前的研究表明,无标记系统可以实现步态运动学参数的可接受的准确性和可靠性,但它们也指出无标记数据的试验间变异性更高。由于试验间变异性的增加可能对数据后处理和分析有重要影响,因此本研究比较了同时记录的无标记和基于标记的数据的试验间变异性。为此,使用了 18 名健康志愿者的数据,他们被指示模拟四种不同的步态模式:生理步态、蹲姿步态、回旋步态和马蹄内翻步态。步态分析使用基于智能手机的无标记系统 OpenCap 和基于标记的运动捕捉系统进行。我们比较了两种系统的试验间变异性,并评估了试验间变异性的变化是否可能取决于分析的步态模式。与基于标记的数据相比,我们观察到无标记系统的试验间变异性增加,不同步态模式的变异性范围为 6.6%至 22.0%。我们的研究结果表明,无标记姿势估计管道会在不同的步态模式和自然变异性水平下为运动学数据引入额外的变异性。我们建议使用平均波形而不是单个波形来缓解这个问题。此外,在基于无标记数据的步态和人类运动分析中使用基于变异性的指标时应谨慎,因为试验间变异性的增加可能会导致误导性结果。