Suppr超能文献

从单细胞数据中表示和提取知识。

Representing and extracting knowledge from single-cell data.

作者信息

Mihai Ionut Sebastian, Chafle Sarang, Henriksson Johan

机构信息

The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden.

Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umeå, Sweden.

出版信息

Biophys Rev. 2023 Aug 5;16(1):29-56. doi: 10.1007/s12551-023-01091-4. eCollection 2024 Feb.

Abstract

Single-cell analysis is currently one of the most high-resolution techniques to study biology. The large complex datasets that have been generated have spurred numerous developments in computational biology, in particular the use of advanced statistics and machine learning. This review attempts to explain the deeper theoretical concepts that underpin current state-of-the-art analysis methods. Single-cell analysis is covered from cell, through instruments, to current and upcoming models. The aim of this review is to spread concepts which are not yet in common use, especially from topology and generative processes, and how new statistical models can be developed to capture more of biology. This opens epistemological questions regarding our ontology and models, and some pointers will be given to how natural language processing (NLP) may help overcome our cognitive limitations for understanding single-cell data.

摘要

单细胞分析是目前研究生物学的最高分辨率技术之一。所生成的大型复杂数据集推动了计算生物学的众多发展,尤其是先进统计学和机器学习的应用。本综述试图解释支撑当前最先进分析方法的更深层次理论概念。从细胞、仪器到当前及即将出现的模型,对单细胞分析进行了全面介绍。本综述的目的是传播尚未广泛应用的概念,特别是来自拓扑学和生成过程的概念,以及如何开发新的统计模型以更好地捕捉生物学信息。这引发了关于我们的本体论和模型的认识论问题,并将给出一些关于自然语言处理(NLP)如何有助于克服我们理解单细胞数据的认知局限的指导意见。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05ad/10937862/65fe6bd50751/12551_2023_1091_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验