Mihai Ionut Sebastian, Chafle Sarang, Henriksson Johan
The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden.
Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umeå, Sweden.
Biophys Rev. 2023 Aug 5;16(1):29-56. doi: 10.1007/s12551-023-01091-4. eCollection 2024 Feb.
Single-cell analysis is currently one of the most high-resolution techniques to study biology. The large complex datasets that have been generated have spurred numerous developments in computational biology, in particular the use of advanced statistics and machine learning. This review attempts to explain the deeper theoretical concepts that underpin current state-of-the-art analysis methods. Single-cell analysis is covered from cell, through instruments, to current and upcoming models. The aim of this review is to spread concepts which are not yet in common use, especially from topology and generative processes, and how new statistical models can be developed to capture more of biology. This opens epistemological questions regarding our ontology and models, and some pointers will be given to how natural language processing (NLP) may help overcome our cognitive limitations for understanding single-cell data.
单细胞分析是目前研究生物学的最高分辨率技术之一。所生成的大型复杂数据集推动了计算生物学的众多发展,尤其是先进统计学和机器学习的应用。本综述试图解释支撑当前最先进分析方法的更深层次理论概念。从细胞、仪器到当前及即将出现的模型,对单细胞分析进行了全面介绍。本综述的目的是传播尚未广泛应用的概念,特别是来自拓扑学和生成过程的概念,以及如何开发新的统计模型以更好地捕捉生物学信息。这引发了关于我们的本体论和模型的认识论问题,并将给出一些关于自然语言处理(NLP)如何有助于克服我们理解单细胞数据的认知局限的指导意见。