Suppr超能文献

scGNN 2.0:一种用于单细胞 RNA-Seq 数据插补和聚类的图神经网络工具。

scGNN 2.0: a graph neural network tool for imputation and clustering of single-cell RNA-Seq data.

机构信息

Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.

Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.

出版信息

Bioinformatics. 2022 Nov 30;38(23):5322-5325. doi: 10.1093/bioinformatics/btac684.

Abstract

MOTIVATION

Gene expression imputation has been an essential step of the single-cell RNA-Seq data analysis workflow. Among several deep-learning methods, the debut of scGNN gained substantial recognition in 2021 for its superior performance and the ability to produce a cell-cell graph. However, the implementation of scGNN was relatively time-consuming and its performance could still be optimized.

RESULTS

The implementation of scGNN 2.0 is significantly faster than scGNN thanks to a simplified close-loop architecture. For all eight datasets, cell clustering performance was increased by 85.02% on average in terms of adjusted rand index, and the imputation Median L1 Error was reduced by 67.94% on average. With the built-in visualizations, users can quickly assess the imputation and cell clustering results, compare against benchmarks and interpret the cell-cell interaction. The expanded input and output formats also pave the way for custom workflows that integrate scGNN 2.0 with other scRNA-Seq toolkits on both Python and R platforms.

AVAILABILITY AND IMPLEMENTATION

scGNN 2.0 is implemented in Python (as of version 3.8) with the source code available at https://github.com/OSU-BMBL/scGNN2.0.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

基因表达推断是单细胞 RNA-Seq 数据分析工作流程的重要步骤。在几种深度学习方法中,scGNN 的首次亮相因其卓越的性能和生成细胞-细胞图的能力而在 2021 年获得了广泛认可。然而,scGNN 的实现相对耗时,其性能仍可优化。

结果

由于简化的闭环架构,scGNN 2.0 的实现速度明显快于 scGNN。对于所有八个数据集,细胞聚类性能平均提高了 85.02%,调整后的兰德指数,平均中位数 L1 误差降低了 67.94%。通过内置的可视化,用户可以快速评估推断和细胞聚类结果,与基准进行比较并解释细胞-细胞相互作用。扩展的输入和输出格式还为自定义工作流程铺平了道路,这些工作流程将 scGNN 2.0 与 Python 和 R 平台上的其他 scRNA-Seq 工具包集成。

可用性和实现

scGNN 2.0 是用 Python 实现的(截至 3.8 版),源代码可在 https://github.com/OSU-BMBL/scGNN2.0 上获得。

补充信息

补充数据可在生物信息学在线获得。

相似文献

10
GNN-based embedding for clustering scRNA-seq data.基于图神经网络的 scRNA-seq 数据聚类嵌入方法。
Bioinformatics. 2022 Jan 27;38(4):1037-1044. doi: 10.1093/bioinformatics/btab787.

引用本文的文献

8
scVIC: deep generative modeling of heterogeneity for scRNA-seq data.scVIC:用于scRNA-seq数据异质性的深度生成建模
Bioinform Adv. 2024 Jun 13;4(1):vbae086. doi: 10.1093/bioadv/vbae086. eCollection 2024.
9
Representing and extracting knowledge from single-cell data.从单细胞数据中表示和提取知识。
Biophys Rev. 2023 Aug 5;16(1):29-56. doi: 10.1007/s12551-023-01091-4. eCollection 2024 Feb.

本文引用的文献

4
Integrated analysis of multimodal single-cell data.多模态单细胞数据的综合分析。
Cell. 2021 Jun 24;184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048. Epub 2021 May 31.
6
Eleven grand challenges in single-cell data science.单细胞数据科学的 11 大挑战。
Genome Biol. 2020 Feb 7;21(1):31. doi: 10.1186/s13059-020-1926-6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验