Schmidt Katharina, Cox Russell J
OCI, BMWZ, Leibniz University of Hannover Schneiderberg 38 30167 Hannover Germany
RSC Adv. 2024 Mar 15;14(13):8963-8970. doi: 10.1039/d3ra08463a. eCollection 2024 Mar 14.
The programming of widely distributed iterative fungal hr-PKS is mysterious, yet it is central for generating polyketide natural product diversity by controlling the chain length, β-processing level and methylation patterns of fungal polyketides. For the iterative hr-PKS TENS, responsible for producing the pentaketide-tyrosine hybrid pretenellin A 1, the chain length programming is known to be determined by the KR domain. Structure prediction of the KR domain enabled the identification of a relevant substrate binding helix, which was the focus of swap experiments with corresponding sequences from the related hr-PKS DMBS and MILS that produce similar hexa- and heptaketides (2, 3). The investigations of chimeric TENS variants expressed in the host NSAR1 revealed the substrate binding helix as a promising target for further investigations, evidenced by observed increase of the chain length during swap experiments. Building on these findings, rational engineering of TENS was applied based on structural analysis and sequence alignment. A minimal set of four simultaneous amino acid mutations achieved the re-programming of TENS by producing hexaketides in minor amounts. To refine our understanding and minimize the number of mutations impacting polyketide chain length, we conducted an alanine scan, pinpointing crucial amino acid positions. Our findings give indications on the intrinsic programming of hr-PKS domains by minimal changes in the amino acid sequence as one influence factor for programming.
广泛分布的迭代型真菌高还原型聚酮合酶(hr-PKS)的编程机制尚不明晰,然而,通过控制真菌聚酮化合物的链长、β-加工水平和甲基化模式,它对于产生聚酮天然产物多样性至关重要。对于负责产生五酮基-酪氨酸杂合pretedinin A 1的迭代型hr-PKS TENS而言,已知链长编程由KR结构域决定。KR结构域的结构预测使得能够鉴定出一个相关的底物结合螺旋,这是与产生类似六酮和七酮化合物的相关hr-PKS DMBS和MILS的相应序列进行交换实验的重点(2, 3)。对在宿主NSAR1中表达的嵌合TENS变体的研究表明,底物结合螺旋是进一步研究的一个有前景的靶点,交换实验中观察到的链长增加证明了这一点。基于这些发现,基于结构分析和序列比对对TENS进行了合理工程改造。一组最少的四个同时发生的氨基酸突变通过少量产生六酮化合物实现了TENS的重新编程。为了深化我们的理解并最小化影响聚酮链长的突变数量,我们进行了丙氨酸扫描,确定了关键的氨基酸位置。我们的发现表明,作为编程的一个影响因素,氨基酸序列的微小变化对hr-PKS结构域的内在编程具有指示作用。