Suppr超能文献

基于活动监测和应用的香港中文人群抑郁的多模态数字化评估

Multimodal digital assessment of depression with actigraphy and app in Hong Kong Chinese.

机构信息

Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.

Department of Psychiatry, Fujian Medical University Affiliated Fuzhou Neuropsychiatric Hospital, Fuzhou, China.

出版信息

Transl Psychiatry. 2024 Mar 18;14(1):150. doi: 10.1038/s41398-024-02873-4.

Abstract

There is an emerging potential for digital assessment of depression. In this study, Chinese patients with major depressive disorder (MDD) and controls underwent a week of multimodal measurement including actigraphy and app-based measures (D-MOMO) to record rest-activity, facial expression, voice, and mood states. Seven machine-learning models (Random Forest [RF], Logistic regression [LR], Support vector machine [SVM], K-Nearest Neighbors [KNN], Decision tree [DT], Naive Bayes [NB], and Artificial Neural Networks [ANN]) with leave-one-out cross-validation were applied to detect lifetime diagnosis of MDD and non-remission status. Eighty MDD subjects and 76 age- and sex-matched controls completed the actigraphy, while 61 MDD subjects and 47 controls completed the app-based assessment. MDD subjects had lower mobile time (P = 0.006), later sleep midpoint (P = 0.047) and Acrophase (P = 0.024) than controls. For app measurement, MDD subjects had more frequent brow lowering (P = 0.023), less lip corner pulling (P = 0.007), higher pause variability (P = 0.046), more frequent self-reference (P = 0.024) and negative emotion words (P = 0.002), lower articulation rate (P < 0.001) and happiness level (P < 0.001) than controls. With the fusion of all digital modalities, the predictive performance (F1-score) of ANN for a lifetime diagnosis of MDD was 0.81 and 0.70 for non-remission status when combined with the HADS-D item score, respectively. Multimodal digital measurement is a feasible diagnostic tool for depression in Chinese. A combination of multimodal measurement and machine-learning approach has enhanced the performance of digital markers in phenotyping and diagnosis of MDD.

摘要

目前,抑郁的数字化评估具有很大的发展潜力。在这项研究中,中国的重度抑郁症(MDD)患者和对照组患者接受了为期一周的多模态测量,包括活动记录仪和基于应用程序的测量(D-MOMO),以记录休息-活动、面部表情、声音和情绪状态。七种机器学习模型(随机森林[RF]、逻辑回归[LR]、支持向量机[SVM]、K-最近邻[KNN]、决策树[DT]、朴素贝叶斯[NB]和人工神经网络[ANN]),采用留一交叉验证法,用于检测 MDD 的终身诊断和非缓解状态。80 名 MDD 患者和 76 名年龄和性别匹配的对照组完成了活动记录仪的测量,而 61 名 MDD 患者和 47 名对照组完成了基于应用程序的评估。与对照组相比,MDD 患者的移动时间(P=0.006)、睡眠中点(P=0.047)和高峰时间(P=0.024)更低。在应用程序测量方面,MDD 患者的皱眉频率更高(P=0.023)、嘴角下拉频率更低(P=0.007)、停顿变化更大(P=0.046)、自我参照频率更高(P=0.024)、消极情绪词汇更多(P=0.002)、发音率更低(P<0.001)、幸福感更低(P<0.001)。融合所有数字模式后,ANN 对 MDD 终身诊断的预测性能(F1 评分)分别为 0.81 和 0.70,与 HADS-D 项目评分相结合时。多模态数字测量是一种可行的中国抑郁症诊断工具。多模态测量和机器学习方法的结合提高了数字标志物在 MDD 表型和诊断中的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e5f/10948748/ee58874d0c8f/41398_2024_2873_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验