Suppr超能文献

诊断体温极值时的陷阱。

Pitfalls in diagnosing temperature extremes.

作者信息

Brunner Lukas, Voigt Aiko

机构信息

Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria.

出版信息

Nat Commun. 2024 Mar 18;15(1):2087. doi: 10.1038/s41467-024-46349-x.

Abstract

Worsening temperature extremes are among the most severe impacts of human-induced climate change. These extremes are often defined as rare events that exceed a specific percentile threshold within the distribution of daily maximum temperature. The percentile-based approach is chosen to follow regional and seasonal temperature variations so that extremes can occur globally and in all seasons, and frequently uses a running seasonal window to increase the sample size for the threshold calculation. Here, we show that running seasonal windows as used in many studies in recent years introduce a time-, region-, and dataset-depended bias that can lead to a striking underestimation of the expected extreme frequency. We reveal that this bias arises from artificially mixing the mean seasonal cycle into the extreme threshold and propose a simple solution that essentially eliminates it. We then use the corrected extreme frequency as reference to show that the bias also leads to an overestimation of future heatwave changes by as much as 30% in some regions. Based on these results we stress that running seasonal windows should not be used without correction for estimating extremes and their impacts.

摘要

极端气温加剧是人为引起的气候变化最严重的影响之一。这些极端情况通常被定义为在日最高气温分布中超过特定百分位数阈值的罕见事件。选择基于百分位数的方法是为了跟踪区域和季节温度变化,以便极端情况能在全球各地和所有季节发生,并且经常使用移动季节窗口来增加阈值计算的样本量。在此,我们表明,近年来许多研究中使用的移动季节窗口会引入一种依赖于时间、区域和数据集的偏差,这种偏差可能导致对预期极端频率的显著低估。我们揭示这种偏差源于将平均季节周期人为地混入极端阈值中,并提出了一种基本消除该偏差的简单解决方案。然后,我们使用校正后的极端频率作为参考,表明这种偏差在某些地区还会导致对未来热浪变化的高估,高估幅度高达30%。基于这些结果,我们强调,在估计极端情况及其影响时,若不进行校正,不应使用移动季节窗口。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4719/10948863/5a4e30a6995f/41467_2024_46349_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验