Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
Institute of Cognitive Neuroscience, University College London, London, UK.
Nat Hum Behav. 2024 Jun;8(6):1108-1123. doi: 10.1038/s41562-023-01811-6. Epub 2024 Mar 18.
A long-standing engineering ambition has been to design anthropomorphic bionic limbs: devices that look like and are controlled in the same way as the biological body (biomimetic). The untested assumption is that biomimetic motor control enhances device embodiment, learning, generalization and automaticity. To test this, we compared biomimetic and non-biomimetic control strategies for non-disabled participants when learning to control a wearable myoelectric bionic hand operated by an eight-channel electromyography pattern-recognition system. We compared motor learning across days and behavioural tasks for two training groups: biomimetic (mimicking the desired bionic hand gesture with biological hand) and arbitrary control (mapping an unrelated biological hand gesture with the desired bionic gesture). For both trained groups, training improved bionic limb control, reduced cognitive reliance and increased embodiment over the bionic hand. Biomimetic users had more intuitive and faster control early in training. Arbitrary users matched biomimetic performance later in training. Furthermore, arbitrary users showed increased generalization to a new control strategy. Collectively, our findings suggest that biomimetic and arbitrary control strategies provide different benefits. The optimal strategy is probably not strictly biomimetic, but rather a flexible strategy within the biomimetic-to-arbitrary spectrum, depending on the user, available training opportunities and user requirements.
长期以来,工程学一直致力于设计类人仿生肢体:这些设备在外观和控制方式上都与生物身体相似(仿生)。未经证实的假设是,仿生运动控制可以增强设备的体现、学习、泛化和自动化。为了验证这一点,我们比较了非残疾参与者在使用通过八通道肌电图模式识别系统操作的可穿戴肌电仿生手进行学习时的仿生和非仿生控制策略。我们比较了两个训练组在多天和行为任务中的运动学习情况:仿生(用生物手模拟所需的仿生手手势)和任意控制(用相关的生物手手势映射所需的仿生手势)。对于两个受过训练的组,训练都提高了仿生肢体的控制能力,减少了对认知的依赖,并增加了对仿生手的体现。仿生使用者在训练早期具有更直观和更快的控制能力。任意使用者在训练后期可以匹配仿生性能。此外,任意使用者在新的控制策略上表现出了更强的泛化能力。总的来说,我们的发现表明仿生和任意控制策略都有不同的优势。最佳策略可能不是严格的仿生,而是在仿生到任意范围内的灵活策略,具体取决于用户、可用的训练机会和用户要求。