Suppr超能文献

仿生肢体控制应该模仿人体吗?控制策略对仿生手技能学习的影响。

Should bionic limb control mimic the human body? Impact of control strategy on bionic hand skill learning.

作者信息

Schone Hunter R, Udeozor Malcolm, Moninghoff Mae, Rispoli Beth, Vandersea James, Lock Blair, Hargrove Levi, Makin Tamar R, Baker Chris I

机构信息

Laboratory of Brain & Cognition, National Institutes of Mental Health, National Institutes of Health, Bethesda, MD, USA.

Institute of Cognitive Neuroscience, University College London, London, UK.

出版信息

bioRxiv. 2023 Feb 8:2023.02.07.525548. doi: 10.1101/2023.02.07.525548.

Abstract

A longstanding engineering ambition has been to design anthropomorphic bionic limbs: devices that look like and are controlled in the same way as the biological body (biomimetic). The untested assumption is that biomimetic motor control enhances device embodiment, learning, generalization, and automaticity. To test this, we compared biomimetic and non-biomimetic control strategies for able-bodied participants when learning to operate a wearable myoelectric bionic hand. We compared motor learning across days and behavioural tasks for two training groups: Biomimetic (mimicking the desired bionic hand gesture with biological hand) and Arbitrary control (mapping an unrelated biological hand gesture with the desired bionic gesture). For both trained groups, training improved bionic limb control, reduced cognitive reliance, and increased embodiment over the bionic hand. Biomimetic users had more intuitive and faster control early in training. Arbitrary users matched biomimetic performance later in training. Further, arbitrary users showed increased generalization to a novel control strategy. Collectively, our findings suggest that biomimetic and arbitrary control strategies provide different benefits. The optimal strategy is likely not strictly biomimetic, but rather a flexible strategy within the biomimetic to arbitrary spectrum, depending on the user, available training opportunities and user requirements.

摘要

长期以来,工程领域的一个目标是设计拟人化的仿生肢体:即外观和控制方式都与生物身体相同的设备(仿生)。一个未经检验的假设是,仿生运动控制可增强设备的实体感、学习能力、泛化能力和自动化程度。为了验证这一点,我们在健康参与者学习操作可穿戴肌电仿生手时,比较了仿生和非仿生控制策略。我们比较了两个训练组在不同天数和行为任务中的运动学习情况:仿生组(用生物手模仿所需的仿生手势)和任意控制组(将不相关的生物手势与所需的仿生手势进行映射)。对于两个训练组来说,训练都改善了仿生肢体控制,减少了认知依赖,并增强了对仿生手的实体感。仿生组用户在训练初期的控制更直观、速度更快。任意控制组用户在训练后期达到了与仿生组相当的表现。此外,任意控制组用户对一种新的控制策略表现出更强的泛化能力。总体而言,我们的研究结果表明,仿生和任意控制策略带来了不同的益处。最佳策略可能并非严格的仿生策略,而是在从仿生到任意的范围内的一种灵活策略,这取决于用户、可用的训练机会和用户需求。

相似文献

9
Learning to control opening and closing a myoelectric hand.学习控制肌电手的开合。
Arch Phys Med Rehabil. 2010 Sep;91(9):1442-6. doi: 10.1016/j.apmr.2010.06.025.

本文引用的文献

2
How variability shapes learning and generalization.变异性如何塑造学习和泛化。
Trends Cogn Sci. 2022 Jun;26(6):462-483. doi: 10.1016/j.tics.2022.03.007.
3
Going beyond primary motor cortex to improve brain-computer interfaces.超越初级运动皮层以改善脑机接口。
Trends Neurosci. 2022 Mar;45(3):176-183. doi: 10.1016/j.tins.2021.12.006. Epub 2022 Jan 22.
6
Toward higher-performance bionic limbs for wider clinical use.朝着用于更广泛临床应用的高性能仿生肢体发展。
Nat Biomed Eng. 2023 Apr;7(4):473-485. doi: 10.1038/s41551-021-00732-x. Epub 2021 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验