Zhang Zhengyi, Feng Jianqiang, Yang Chao, Cui Haiyang, Harrison Wesley, Zhong Dongping, Wang Binju, Zhao Huimin
DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Nat Catal. 2023 Aug;6(8):687-694. doi: 10.1038/s41929-023-00994-5. Epub 2023 Jul 31.
Since the discovery of Hofmann-Löffler-Freytag reaction more than 130 years ago, nitrogen-centered radicals have been widely studied in both structures and reactivities. Nevertheless, catalytic enantioselective intermolecular radical hydroamination remains a challenge due to the existence of side reactions, short lifetime of nitrogen-centered radicals, and lack of understanding of the fundamental catalytic steps. In chemistry, nitrogen-centered radicals are produced with radical initiators, photocatalysts, or electrocatalysts. On the other hand, the generation and reaction of nitrogen-centered radicals are unknown in nature. Here we report a pure biocatalytic system by successfully repurposing an ene-reductase through directed evolution for the photoenzymatic production of nitrogen-centered radicals and enantioselective intermolecular radical hydroaminations. These reactions progress efficiently at room temperature under visible light without any external photocatalysts and exhibit excellent enantioselectivities. Detailed mechanistic study reveals that the enantioselectivity originates from the radical-addition step while the reactivity originates from the ultrafast photoinduced electron transfer (ET) from reduced flavin mononucleotide (FMNH) to nitrogen-containing substrates.
自130多年前发现霍夫曼-勒夫勒-弗赖塔格反应以来,以氮为中心的自由基在结构和反应活性方面都得到了广泛研究。然而,由于存在副反应、以氮为中心的自由基寿命短以及对基本催化步骤缺乏了解,催化对映选择性分子间自由基氢胺化反应仍然是一个挑战。在化学领域,以氮为中心的自由基是通过自由基引发剂、光催化剂或电催化剂产生的。另一方面,以氮为中心的自由基在自然界中的产生和反应尚不清楚。在此,我们报告了一个纯生物催化体系,通过定向进化成功地将烯还原酶重新用于光酶法生产以氮为中心的自由基和对映选择性分子间自由基氢胺化反应。这些反应在室温下于可见光下高效进行,无需任何外部光催化剂,并表现出优异的对映选择性。详细的机理研究表明,对映选择性源于自由基加成步骤,而反应活性源于从还原型黄素单核苷酸(FMNH)到含氮底物的超快光诱导电子转移(ET)。