Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Siena, Italy.
Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, USA.
Phys Chem Chem Phys. 2024 Mar 27;26(13):10343-10356. doi: 10.1039/d4cp00193a.
Rhodopsins are light-responsive proteins forming two vast and evolutionary distinct superfamilies whose functions are invariably triggered by the photoisomerization of a single retinal chromophore. In 2018 a third widespread superfamily of rhodopsins called heliorhodopsins was discovered using functional metagenomics. Heliorhodopsins, with their markedly different structural features with respect to the animal and microbial superfamilies, offer an opportunity to study how evolution has manipulated the chromophore photoisomerization to achieve adaptation. One question is related to the mechanism of such a reaction and how it differs from that of animal and microbial rhodopsins. To address this question, we use hundreds of quantum-classical trajectories to simulate the spectroscopically documented picosecond light-induced dynamics of a heliorhodopsin from the archaea thermoplasmatales archaeon (TaHeR). We show that, consistently with the observations, the trajectories reveal two excited state decay channels. However, inconsistently with previous hypotheses, only one channel is associated with the -C13C14- rotation of microbial rhodopsins while the second channel is characterized by the -C11C12- rotation typical of animal rhodopsins. The fact that such -C11C12- rotation is aborted upon decay and ground state relaxation, explains why illumination of TaHeR only produces the 13- isomer with a low quantum efficiency. We argue that the documented lack of regioselectivity in double-bond excited state twisting motion is the result of an "adaptation" that could be completely lost specific residue substitutions modulating the steric hindrance experienced along the isomerization motion.
视紫红质是对光有反应的蛋白质,形成两个广泛且进化上截然不同的超家族,其功能始终由单个视黄醛发色团的光异构化触发。2018 年,使用功能宏基因组学发现了第三种广泛存在的视紫红质超家族,称为菌视紫红质。与动物和微生物超家族相比,菌视紫红质具有明显不同的结构特征,为研究进化如何操纵发色团光异构化以实现适应提供了机会。一个问题与这种反应的机制有关,以及它与动物和微生物视紫红质的反应机制有何不同。为了解决这个问题,我们使用数百个量子经典轨迹来模拟来自嗜热菌古菌(TaHeR)的菌视紫红质的皮秒光诱导动力学,这些动力学已在光谱上记录下来。我们表明,与观察结果一致,轨迹揭示了两个激发态衰减通道。然而,与先前的假设不一致的是,只有一个通道与微生物视紫红质的-C13-C14-旋转有关,而第二个通道的特征是与动物视紫红质典型的-C11-C12-旋转有关。事实上,这种-C11-C12-旋转在衰减和基态弛豫过程中被阻止,这解释了为什么 TaHeR 的光照只会产生低量子效率的 13-异构体。我们认为,在双键激发态扭曲运动中缺乏区域选择性是“适应”的结果,这种“适应”可能会由于特定残基取代而完全丧失,这些取代会调节异构化运动中所经历的空间位阻。