Salvadori Giacomo, Saraceno Piermarco, Santomieri Alisia, John Chris, Pedraza-González Laura
Institute for Computational Biomedicine (INM-9), Forschungszentrum Jülich 52428 Jülich Germany.
Dipartimento di Chimica e Chimica Industriale, Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
Chem Sci. 2025 Aug 29. doi: 10.1039/d5sc04961j.
Carotenoids serve as accessory light-harvesting pigments in microbial rhodopsins, but the mechanisms enabling efficient energy transfer in systems lacking canonical 4-keto groups remain poorly understood. Here, we combine long-timescale molecular dynamics, polarizable quantum mechanics/molecular mechanics (QM/MM) calculations, and excitonic modeling to elucidate the structural and electronic factors that govern carotenoid-to-retinal excitation energy transfer (EET) in the proton-pumping rhodopsin Kin4B8. Focusing on the xanthophylls, zeaxanthin and lutein, we show they support ultrafast (<100 fs) and high-efficiency (≈70%) EET, enabled not by specific functional groups but by precise protein-ligand geometry. The carotenoid's β-ring is anchored a dynamic hydrogen-bonding network with Ser208 and Tyr209 within a conserved protein cavity, a configuration that optimally positions the retinal and carotenoid chromophores for strong excitonic coupling. Simulated absorption and circular dichroism (CD) spectra accurately reproduce observed spectral features, including the characteristic biphasic CD band shapes, notably the blue-shifted CD minimum compared to the absorption peak in the retinal region. A Förster-type kinetic model, built from QM/MM-derived parameters, recovers experimental transfer times and efficiencies. Our findings provide a mechanistic rationale for recent mutagenesis and carotenoid screening experiments, establishing that rhodopsin-based light harvesting is driven by protein-guided chromophore alignment rather than fixed carotenoid chemistry. This work establishes design principles for engineering photoactive proteins and offers a transferable framework for analyzing energy transfer across natural and synthetic light-harvesting systems.
类胡萝卜素在微生物视紫红质中作为辅助光捕获色素,但在缺乏典型4-酮基的系统中实现高效能量转移的机制仍知之甚少。在这里,我们结合长时间尺度的分子动力学、可极化量子力学/分子力学(QM/MM)计算和激子建模,以阐明在质子泵视紫红质Kin4B8中控制类胡萝卜素到视黄醛激发能量转移(EET)的结构和电子因素。聚焦于叶黄素、玉米黄质,我们发现它们支持超快(<100飞秒)和高效(≈70%)的EET,这并非由特定官能团实现,而是由精确的蛋白质-配体几何结构实现。类胡萝卜素的β-环在一个保守的蛋白质腔内与Ser208和Tyr209形成动态氢键网络,这种构型将视黄醛和类胡萝卜素发色团最佳定位以实现强激子耦合。模拟的吸收光谱和圆二色性(CD)光谱准确再现了观察到的光谱特征,包括特征性的双相CD带形状,特别是在视黄醛区域与吸收峰相比蓝移的CD最小值。基于QM/MM推导参数构建的福斯特型动力学模型恢复了实验转移时间和效率。我们的研究结果为最近的诱变和类胡萝卜素筛选实验提供了一个机制原理,确定基于视紫红质的光捕获是由蛋白质引导的发色团排列驱动,而非固定的类胡萝卜素化学性质。这项工作确立了工程化光活性蛋白的设计原则,并为分析天然和合成光捕获系统中的能量转移提供了一个可转移的框架。