Chen S, Zeng D, Bian Z, Ma J
School of Biomedical Engineering, Southern Medical University//Guangzhou Key Laboratory of Medical Radioimaging and Detection Technology, Guangzhou 510515, China.
Nan Fang Yi Ke Da Xue Xue Bao. 2024 Feb 20;44(2):333-343. doi: 10.12122/j.issn.1673-4254.2024.02.16.
To propose a low-dose CT reconstruction algorithm across different scanners based on federated feature learning (FedCT) to improve the generalization of deep learning models for multiple CT scanners and protect data privacy.
In the proposed FedCT framework, each client is assigned an inverse Radon transform-based reconstruction model to serve as a local network model that participates in federated learning. A projection- domain specific learning strategy is adopted to preserve the geometry specificity in the local projection domain. Federated feature learning is introduced in the model, which utilizes conditional parameters to mark the local data and feed the conditional parameters into the network for encoding to enhance the generalization of the model in the image domain.
In the cross-client, multi-scanner, and multi-protocol low-dose CT reconstruction experiments, FedCT achieved the highest PSNR (+2.8048, +2.7301, and +2.7263 compared to the second best federated learning method), the highest SSIM (+0.0009, +0.0165, and +0.0131 in the same comparison), and the lowest RMSE (- 0.6687, - 1.5956, and - 0.9962). In the ablation experiment, compared with the general federated learning strategy, the model with projection-specific learning strategy showed an average improvement by 1.18 on Q1 of the PSNR and an average decrease by 1.36 on Q3 of the RMSE on the test set. The introduction of federated feature learning in FedCT further improved the Q1 of the PSNR on the test set by 3.56 and reduced the Q3 of the RMSE by 1.80.
FedCT provides an effective solution for collaborative construction of CT reconstruction models, which can enhance model generalization and further improve the reconstruction performance on global data while protecting data privacy.
提出一种基于联邦特征学习(FedCT)的跨不同扫描仪的低剂量CT重建算法,以提高深度学习模型对多种CT扫描仪的泛化能力并保护数据隐私。
在所提出的FedCT框架中,为每个客户端分配一个基于逆拉东变换的重建模型,作为参与联邦学习的局部网络模型。采用投影域特定学习策略来保留局部投影域中的几何特异性。在模型中引入联邦特征学习,利用条件参数标记局部数据,并将条件参数输入网络进行编码,以增强模型在图像域中的泛化能力。
在跨客户端、多扫描仪和多协议低剂量CT重建实验中,FedCT实现了最高的峰值信噪比(与次优的联邦学习方法相比分别提高了+2.8048、+2.7301和+2.7263)、最高的结构相似性指数(在相同比较中分别为+0.0009、+0.0165和+0.0131)以及最低的均方根误差(分别为-0.6687、-1.5956和-0.9962)。在消融实验中,与一般的联邦学习策略相比,采用投影特定学习策略的模型在测试集上的峰值信噪比Q1平均提高了1.18,均方根误差Q3平均降低了1.36。在FedCT中引入联邦特征学习进一步将测试集上的峰值信噪比Q1提高了3.56,并将均方根误差Q3降低了1.80。
FedCT为CT重建模型的协同构建提供了一种有效解决方案,可增强模型泛化能力,并在保护数据隐私的同时进一步提高对全局数据的重建性能。