Zhang Xiaoyu, Wang Hao, Zeng Dong, Bian Zhaoying
School of Biomedical Engineering, Southern Medical University/ Guangdong Provincial Key Laboratory of Medical Image Processing, Guangzhou 510515, China.
Nan Fang Yi Ke Da Xue Xue Bao. 2025 Apr 20;45(4):844-852. doi: 10.12122/j.issn.1673-4254.2025.04.20.
We propose a low-dose CT image restoration method based on central guidance and alternating optimization (FedGP).
The FedGP framework revolutionizes the traditional federated learning model by adopting a structure without a fixed central server, where each institution alternatively serves as the central server. This method uses an institution-modulated CT image restoration network as the core of client-side local training. Through a federated learning approach of central guidance and alternating optimization, the central server leverages local labeled data to guide client-side network training to enhance the generalization capability of the CT imaging model across multiple institutions.
In the low-dose and sparse-view CT image restoration tasks, the FedGP method showed significant advantages in both visual and quantitative evaluation and achieved the highest PSNR (40.25 and 38.84), the highest SSIM (0.95 and 0.92), and the lowest RMSE (2.39 and 2.56). Ablation study of FedGP demonstrated that compared with FedGP(w/o GP) without central guidance, the FedGP method better adapted to data heterogeneity across institutions, thus ensuring robustness and generalization capability of the model in different imaging conditions.
FedGP provides a more flexible FL framework to solve the problem of CT imaging heterogeneity and well adapts to multi-institutional data characteristics to improve generalization ability of the model under diverse imaging geometric configurations.
我们提出一种基于中心引导和交替优化的低剂量CT图像恢复方法(FedGP)。
FedGP框架通过采用无固定中心服务器的结构革新了传统联邦学习模型,其中每个机构交替充当中心服务器。该方法使用机构调制的CT图像恢复网络作为客户端本地训练的核心。通过中心引导和交替优化的联邦学习方法,中心服务器利用本地标记数据来指导客户端网络训练,以增强CT成像模型在多个机构中的泛化能力。
在低剂量和稀疏视图CT图像恢复任务中,FedGP方法在视觉和定量评估方面均显示出显著优势,实现了最高的PSNR(40.25和38.84)、最高的SSIM(0.95和0.92)以及最低的RMSE(2.39和2.56)。对FedGP的消融研究表明,与无中心引导的FedGP(无GP)相比,FedGP方法能更好地适应不同机构间的数据异质性,从而确保模型在不同成像条件下的稳健性和泛化能力。
FedGP提供了一个更灵活的联邦学习框架来解决CT成像异质性问题,并能很好地适应多机构数据特征,以提高模型在不同成像几何配置下的泛化能力。