Suppr超能文献

一种基于中心引导和交替优化的低剂量CT图像恢复方法

[A low-dose CT image restoration method based on central guidance and alternating optimization].

作者信息

Zhang Xiaoyu, Wang Hao, Zeng Dong, Bian Zhaoying

机构信息

School of Biomedical Engineering, Southern Medical University/ Guangdong Provincial Key Laboratory of Medical Image Processing, Guangzhou 510515, China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2025 Apr 20;45(4):844-852. doi: 10.12122/j.issn.1673-4254.2025.04.20.

Abstract

OBJECTIVES

We propose a low-dose CT image restoration method based on central guidance and alternating optimization (FedGP).

METHODS

The FedGP framework revolutionizes the traditional federated learning model by adopting a structure without a fixed central server, where each institution alternatively serves as the central server. This method uses an institution-modulated CT image restoration network as the core of client-side local training. Through a federated learning approach of central guidance and alternating optimization, the central server leverages local labeled data to guide client-side network training to enhance the generalization capability of the CT imaging model across multiple institutions.

RESULTS

In the low-dose and sparse-view CT image restoration tasks, the FedGP method showed significant advantages in both visual and quantitative evaluation and achieved the highest PSNR (40.25 and 38.84), the highest SSIM (0.95 and 0.92), and the lowest RMSE (2.39 and 2.56). Ablation study of FedGP demonstrated that compared with FedGP(w/o GP) without central guidance, the FedGP method better adapted to data heterogeneity across institutions, thus ensuring robustness and generalization capability of the model in different imaging conditions.

CONCLUSIONS

FedGP provides a more flexible FL framework to solve the problem of CT imaging heterogeneity and well adapts to multi-institutional data characteristics to improve generalization ability of the model under diverse imaging geometric configurations.

摘要

目的

我们提出一种基于中心引导和交替优化的低剂量CT图像恢复方法(FedGP)。

方法

FedGP框架通过采用无固定中心服务器的结构革新了传统联邦学习模型,其中每个机构交替充当中心服务器。该方法使用机构调制的CT图像恢复网络作为客户端本地训练的核心。通过中心引导和交替优化的联邦学习方法,中心服务器利用本地标记数据来指导客户端网络训练,以增强CT成像模型在多个机构中的泛化能力。

结果

在低剂量和稀疏视图CT图像恢复任务中,FedGP方法在视觉和定量评估方面均显示出显著优势,实现了最高的PSNR(40.25和38.84)、最高的SSIM(0.95和0.92)以及最低的RMSE(2.39和2.56)。对FedGP的消融研究表明,与无中心引导的FedGP(无GP)相比,FedGP方法能更好地适应不同机构间的数据异质性,从而确保模型在不同成像条件下的稳健性和泛化能力。

结论

FedGP提供了一个更灵活的联邦学习框架来解决CT成像异质性问题,并能很好地适应多机构数据特征,以提高模型在不同成像几何配置下的泛化能力。

相似文献

本文引用的文献

4
AbdomenCT-1K: Is Abdominal Organ Segmentation a Solved Problem?腹部 CT-1K:腹部器官分割是否已经解决?
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6695-6714. doi: 10.1109/TPAMI.2021.3100536. Epub 2022 Sep 14.
8
Low-dose CT image and projection dataset.低剂量 CT 图像和投影数据集。
Med Phys. 2021 Feb;48(2):902-911. doi: 10.1002/mp.14594. Epub 2020 Dec 16.
10
Radon Inversion via Deep Learning.基于深度学习的氡反演。
IEEE Trans Med Imaging. 2020 Jun;39(6):2076-2087. doi: 10.1109/TMI.2020.2964266. Epub 2020 Jan 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验