Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States.
Michigan Institute for Data Science (MIDAS), University of Michigan, Ann Arbor, Michigan 48109, United States.
Environ Sci Technol. 2024 Apr 2;58(13):5889-5898. doi: 10.1021/acs.est.4c00458. Epub 2024 Mar 19.
Human exposure to toxic chemicals presents a huge health burden. Key to understanding chemical toxicity is knowledge of the molecular target(s) of the chemicals. Because a comprehensive safety assessment for all chemicals is infeasible due to limited resources, a robust computational method for discovering targets of environmental exposures is a promising direction for public health research. In this study, we implemented a novel matrix completion algorithm named coupled matrix-matrix completion (CMMC) for predicting direct and indirect exposome-target interactions, which exploits the vast amount of accumulated data regarding chemical exposures and their molecular targets. Our approach achieved an AUC of 0.89 on a benchmark data set generated using data from the Comparative Toxicogenomics Database. Our case studies with bisphenol A and its analogues, PFAS, dioxins, PCBs, and VOCs show that CMMC can be used to accurately predict molecular targets of novel chemicals without any prior bioactivity knowledge. Our results demonstrate the feasibility and promise of computationally predicting environmental chemical-target interactions to efficiently prioritize chemicals in hazard identification and risk assessment.
人类暴露于有毒化学物质会带来巨大的健康负担。了解化学毒性的关键是了解化学物质的分子靶标。由于资源有限,对所有化学物质进行全面的安全评估是不可行的,因此开发一种强大的计算方法来发现环境暴露的靶标是公共卫生研究的一个有前途的方向。在这项研究中,我们实施了一种名为耦合矩阵-矩阵完成(CMMC)的新型矩阵补全算法,用于预测直接和间接暴露组-靶标相互作用,该算法利用了大量关于化学暴露及其分子靶标的累积数据。我们的方法在使用比较毒理学数据库中的数据生成的基准数据集上实现了 0.89 的 AUC。我们用双酚 A 及其类似物、PFAS、二恶英、多氯联苯和 VOC 进行的案例研究表明,CMMC 可用于准确预测新型化学物质的分子靶标,而无需任何先前的生物活性知识。我们的结果表明,计算预测环境化学-靶标相互作用以有效地对危害识别和风险评估中的化学物质进行优先级排序是可行且有前途的。