School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, Chongqing; Department of Bioengineering, Imperial College London, London, UK.
School of Computer Science, Chongqing University, Chongqing, Chongqing.
Comput Biol Med. 2024 Apr;172:108282. doi: 10.1016/j.compbiomed.2024.108282. Epub 2024 Mar 15.
Cardiac ultrasound (US) image segmentation is vital for evaluating clinical indices, but it often demands a large dataset and expert annotations, resulting in high costs for deep learning algorithms. To address this, our study presents a framework utilizing artificial intelligence generation technology to produce multi-class RGB masks for cardiac US image segmentation. The proposed approach directly performs semantic segmentation of the heart's main structures in US images from various scanning modes. Additionally, we introduce a novel learning approach based on conditional generative adversarial networks (CGAN) for cardiac US image segmentation, incorporating a conditional input and paired RGB masks. Experimental results from three cardiac US image datasets with diverse scan modes demonstrate that our approach outperforms several state-of-the-art models, showcasing improvements in five commonly used segmentation metrics, with lower noise sensitivity. Source code is available at https://github.com/energy588/US2mask.
心脏超声(US)图像分割对于评估临床指标至关重要,但它通常需要大量数据集和专家注释,因此深度学习算法的成本很高。针对这一问题,我们的研究提出了一种利用人工智能生成技术为心脏 US 图像分割生成多类 RGB 掩模的框架。该方法直接对来自不同扫描模式的 US 图像中的心脏主要结构进行语义分割。此外,我们还引入了一种基于条件生成对抗网络(CGAN)的心脏 US 图像分割新方法,该方法结合了条件输入和配对的 RGB 掩模。来自三种具有不同扫描模式的心脏 US 图像数据集的实验结果表明,我们的方法优于几种最先进的模型,在五个常用的分割指标上均有所提高,并且对噪声的敏感性更低。源代码可在 https://github.com/energy588/US2mask 上获得。