Suppr超能文献

锚定融合使靶向融合搜索在批量和单细胞 RNA 测序数据中成为可能。

Anchored-fusion enables targeted fusion search in bulk and single-cell RNA sequencing data.

机构信息

Zhejiang Provincial Key Laboratory of Service Robot, College of Computer Science, Zhejiang University, Hangzhou, China.

Zhejiang Provincial Key Laboratory of Service Robot, College of Computer Science, Zhejiang University, Hangzhou, China; Shanghai Artificial Intelligence Laboratory, Shanghai, China.

出版信息

Cell Rep Methods. 2024 Mar 25;4(3):100733. doi: 10.1016/j.crmeth.2024.100733. Epub 2024 Mar 18.

Abstract

Here, we present Anchored-fusion, a highly sensitive fusion gene detection tool. It anchors a gene of interest, which often involves driver fusion events, and recovers non-unique matches of short-read sequences that are typically filtered out by conventional algorithms. In addition, Anchored-fusion contains a module based on a deep learning hierarchical structure that incorporates self-distillation learning (hierarchical view learning and distillation [HVLD]), which effectively filters out false positive chimeric fragments generated during sequencing while maintaining true fusion genes. Anchored-fusion enables highly sensitive detection of fusion genes, thus allowing for application in cases with low sequencing depths. We benchmark Anchored-fusion under various conditions and found it outperformed other tools in detecting fusion events in simulated data, bulk RNA sequencing (bRNA-seq) data, and single-cell RNA sequencing (scRNA-seq) data. Our results demonstrate that Anchored-fusion can be a useful tool for fusion detection tasks in clinically relevant RNA-seq data and can be applied to investigate intratumor heterogeneity in scRNA-seq data.

摘要

在这里,我们提出了 Anchored-fusion,这是一种高度敏感的融合基因检测工具。它锚定感兴趣的基因,这些基因通常涉及驱动融合事件,并恢复通常被传统算法过滤掉的短读序列的非独特匹配。此外,Anchored-fusion 包含一个基于深度学习层次结构的模块,该模块结合了自我蒸馏学习(层次视图学习和蒸馏 [HVLD]),有效地过滤掉了在测序过程中产生的假阳性嵌合片段,同时保持了真正的融合基因。Anchored-fusion 能够高度敏感地检测融合基因,因此可以应用于测序深度较低的情况。我们在各种条件下对 Anchored-fusion 进行了基准测试,发现它在模拟数据、批量 RNA 测序 (bRNA-seq) 数据和单细胞 RNA 测序 (scRNA-seq) 数据中检测融合事件的性能优于其他工具。我们的结果表明,Anchored-fusion 可以成为临床相关 RNA-seq 数据中融合检测任务的有用工具,并可应用于研究 scRNA-seq 数据中的肿瘤内异质性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a97/10985232/df0d17f2a9bf/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验