Suppr超能文献

单细胞转录组学:数据采集与分析中的当前方法及挑战

Single-Cell Transcriptomics: Current Methods and Challenges in Data Acquisition and Analysis.

作者信息

Adil Asif, Kumar Vijay, Jan Arif Tasleem, Asger Mohammed

机构信息

Department of Computer Sciences, Baba Ghulam Shah Badshah University, Rajouri, India.

Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea.

出版信息

Front Neurosci. 2021 Apr 22;15:591122. doi: 10.3389/fnins.2021.591122. eCollection 2021.

Abstract

Rapid cost drops and advancements in next-generation sequencing have made profiling of cells at individual level a conventional practice in scientific laboratories worldwide. Single-cell transcriptomics [single-cell RNA sequencing (SC-RNA-seq)] has an immense potential of uncovering the novel basis of human life. The well-known heterogeneity of cells at the individual level can be better studied by single-cell transcriptomics. Proper downstream analysis of this data will provide new insights into the scientific communities. However, due to low starting materials, the SC-RNA-seq data face various computational challenges: normalization, differential gene expression analysis, dimensionality reduction, etc. Additionally, new methods like 10× Chromium can profile millions of cells in parallel, which creates a considerable amount of data. Thus, single-cell data handling is another big challenge. This paper reviews the single-cell sequencing methods, library preparation, and data generation. We highlight some of the main computational challenges that require to be addressed by introducing new bioinformatics algorithms and tools for analysis. We also show single-cell transcriptomics data as a big data problem.

摘要

下一代测序技术成本的快速下降和技术进步,使得在单个细胞水平上对细胞进行分析成为全球科学实验室中的常规操作。单细胞转录组学[单细胞RNA测序(SC-RNA-seq)]在揭示人类生命新基础方面具有巨大潜力。单细胞转录组学能够更好地研究个体水平上细胞众所周知的异质性。对这些数据进行适当的下游分析将为科学界提供新的见解。然而,由于起始材料较少,SC-RNA-seq数据面临各种计算挑战:标准化、差异基因表达分析、降维等。此外,像10× Chromium这样的新方法可以并行分析数百万个细胞,这产生了大量数据。因此,单细胞数据处理是另一个重大挑战。本文综述了单细胞测序方法、文库制备和数据生成。我们强调了一些主要的计算挑战,需要通过引入新的生物信息学算法和分析工具来解决。我们还将单细胞转录组学数据展示为一个大数据问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b2/8100238/c62ad9e7f614/fnins-15-591122-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验