Suppr超能文献

分子微观管理:DNA纳米技术为精准医学建立时空控制。

Molecular micromanagement: DNA nanotechnology establishes spatio-temporal control for precision medicine.

作者信息

Kimna Ceren, Lieleg Oliver

出版信息

Biophys Rev (Melville). 2020 Dec 24;1(1):011305. doi: 10.1063/5.0033378. eCollection 2020 Dec.

Abstract

Current advances in DNA nanotechnology pinpoint exciting perspectives for the design of customized, patient-specific treatments. This advance is made possible by the exceptionally high precision and specificity that are typical for DNA base pairing on the one hand and our growing ability to harness those features in synthetic, DNA-based constructs on the other hand. Modern medicine may soon benefit from recent developments in this field, especially regarding the targeted delivery of drugs and the rational interference of synthetic DNA strands with cellular oligonucleotides. In this Review, we summarize selected examples from the area of DNA nanotechnology, where the development of precisely controlled, advanced functional mechanisms was achieved. To demonstrate the high versatility of these rationally designed structures, we categorize the dynamic DNA-based materials suggested for precision medicine according to four fundamental tasks: "hold & release," "heal," "detect & measure," as well as "guide & direct." In all the biomedical applications we highlight, DNA strands not only constitute structural building blocks but allow for creating stimuli-responsive objects, serve as an active cargo, or act as molecular control/guidance tools. Moreover, we discuss several issues that need to be considered when DNA-based structures are designed for applications in the field of precision medicine. Even though the majority of DNA-based objects have not been used in clinical settings yet, recent progress regarding the stability, specificity, and control over the dynamic behavior of synthetic DNA structures has advanced greatly. Thus, medical applications of those nanoscopic objects should be feasible in the near future.

摘要

DNA纳米技术的当前进展为定制化、针对患者的治疗设计指明了令人兴奋的前景。一方面,DNA碱基配对具有极高的精度和特异性,另一方面,我们在基于DNA的合成构建体中利用这些特性的能力不断提高,使得这一进展成为可能。现代医学可能很快会从该领域的最新进展中受益,特别是在药物的靶向递送以及合成DNA链与细胞寡核苷酸的合理干扰方面。在本综述中,我们总结了DNA纳米技术领域的一些精选实例,这些实例实现了精确控制的先进功能机制的开发。为了展示这些合理设计结构的高度通用性,我们根据四个基本任务对为精准医学建议的基于DNA的动态材料进行分类:“保持与释放”、“修复”、“检测与测量”以及“引导与指导”。在我们强调的所有生物医学应用中,DNA链不仅构成结构构建块,还能用于创建刺激响应物体、充当活性货物或作为分子控制/指导工具。此外,我们讨论了在为精准医学领域的应用设计基于DNA的结构时需要考虑的几个问题。尽管大多数基于DNA的物体尚未在临床环境中使用,但在合成DNA结构的稳定性、特异性和动态行为控制方面的最新进展已经取得了很大进步。因此,这些纳米物体的医学应用在不久的将来应该是可行的。

相似文献

1
Molecular micromanagement: DNA nanotechnology establishes spatio-temporal control for precision medicine.
Biophys Rev (Melville). 2020 Dec 24;1(1):011305. doi: 10.1063/5.0033378. eCollection 2020 Dec.
2
Building DNA nanostructures for molecular computation, templated assembly, and biological applications.
Acc Chem Res. 2014 Jun 17;47(6):1778-88. doi: 10.1021/ar500023b. Epub 2014 Apr 10.
3
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
4
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
5
Functionalization of Cellular Membranes with DNA Nanotechnology.
Trends Biotechnol. 2021 Nov;39(11):1208-1220. doi: 10.1016/j.tibtech.2021.02.002. Epub 2021 Mar 12.
6
Nanotechnological selection.
Nanotechnology. 2013 Jan 18;24(2):020201. doi: 10.1088/0957-4484/24/2/020201. Epub 2012 Dec 14.
8
Advances in Designer DNA Nanorobots Enabling Programmable Functions.
Chembiochem. 2022 Sep 16;23(18):e202200119. doi: 10.1002/cbic.202200119. Epub 2022 May 16.
9
Rationally designed DNA-based nanocarriers.
Adv Drug Deliv Rev. 2019 Jul;147:2-21. doi: 10.1016/j.addr.2019.02.003. Epub 2019 Feb 12.
10
DNA-Assisted Smart Nanocarriers: Progress, Challenges, and Opportunities.
ACS Nano. 2021 Feb 23;15(2):1942-1951. doi: 10.1021/acsnano.0c08905. Epub 2021 Jan 25.

引用本文的文献

1
Welcome to , a big tent for the biophysics community.
Biophys Rev (Melville). 2020 Dec 24;1(1):010401. doi: 10.1063/5.0036408. eCollection 2020 Dec.
2
Responsive Nucleic Acid-Based Organosilica Nanoparticles.
J Am Chem Soc. 2023 Oct 25;145(42):22896-22902. doi: 10.1021/jacs.3c00393. Epub 2023 Sep 21.

本文引用的文献

1
Programmable low-cost DNA-based platform for viral RNA detection.
Sci Adv. 2020 Sep 25;6(39). doi: 10.1126/sciadv.abc6246. Print 2020 Sep.
2
A framework for designing delivery systems.
Nat Nanotechnol. 2020 Oct;15(10):819-829. doi: 10.1038/s41565-020-0759-5. Epub 2020 Sep 7.
3
Intranasal Delivery of Targeted Nanoparticles Loaded With miR-132 to Brain for the Treatment of Neurodegenerative Diseases.
Front Pharmacol. 2020 Aug 6;11:1165. doi: 10.3389/fphar.2020.01165. eCollection 2020.
5
DNA Strands Trigger the Intracellular Release of Drugs from Mucin-Based Nanocarriers.
ACS Nano. 2021 Feb 23;15(2):2350-2362. doi: 10.1021/acsnano.0c04035. Epub 2020 Aug 11.
6
Programming the Sequential Release of DNA.
ACS Synth Biol. 2020 Apr 17;9(4):749-755. doi: 10.1021/acssynbio.9b00398. Epub 2020 Apr 8.
7
Enhanced Immunostimulatory Activity of a Cytosine-Phosphate-Guanosine Immunomodulator by the Assembly of Polymer DNA Wires and Spheres.
ACS Appl Mater Interfaces. 2020 Apr 15;12(15):17167-17176. doi: 10.1021/acsami.9b21075. Epub 2020 Apr 1.
8
Glutaraldehyde Cross-Linking of Oligolysines Coating DNA Origami Greatly Reduces Susceptibility to Nuclease Degradation.
J Am Chem Soc. 2020 Feb 19;142(7):3311-3315. doi: 10.1021/jacs.9b11698. Epub 2020 Feb 11.
9
Therapeutic delivery of microRNA-143 by cationic lipoplexes for non-small cell lung cancer treatment in vivo.
J Cancer Res Clin Oncol. 2019 Dec;145(12):2951-2967. doi: 10.1007/s00432-019-03051-6. Epub 2019 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验