Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany; Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany.
Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany.
Trends Biotechnol. 2021 Nov;39(11):1208-1220. doi: 10.1016/j.tibtech.2021.02.002. Epub 2021 Mar 12.
Due to its versatility and programmability, DNA nanotechnology has greatly expanded the experimental toolbox for biomedical research. Recent advances allow reliable and efficient functionalization of cellular plasma membranes with a variety of synthetic DNA constructs, ranging from single strands to complex 3D DNA origami. The scope for applications, which probe biophysical parameters or equip cells with novel functions, is rapidly increasing. These applications extend from programmed cellular connectivity and tissue engineering to molecular force measurements, controlled receptor-ligand interactions, membrane-anchored biosensors, and artificial transmembrane structures. Here, we give guidance on different strategies to functionalize cellular membranes with DNA nanotechnology and summarize current trends employing membrane-anchored DNA as a tool in biophysics, cell biology, and synthetic biology.
由于其多功能性和可编程性,DNA 纳米技术极大地扩展了生物医学研究的实验工具箱。最近的进展允许可靠和有效地将各种合成 DNA 构建体功能化到细胞质膜上,从单链到复杂的 3D DNA 折纸。应用范围正在迅速扩大,包括探测生物物理参数或为细胞配备新功能。这些应用从程序性细胞连接和组织工程扩展到分子力测量、控制受体-配体相互作用、膜锚定生物传感器和人工跨膜结构。在这里,我们提供了使用 DNA 纳米技术对细胞膜进行功能化的不同策略的指导,并总结了当前利用膜锚定 DNA 作为生物物理、细胞生物学和合成生物学工具的趋势。