Computer Science Department, Federal University of Rondônia (DACC/UNIR), 364 BR, 76801-059, Rondônia, Brazil; Institute of Mathematics and Computer Sciences, University of Sao Paulo (ICMC/USP), 400 Trabalhador Saocarlense Avenue, 13566-590 São Carlos, São Paulo, Brazil.
Institute of Mathematics and Computer Sciences, University of Sao Paulo (ICMC/USP), 400 Trabalhador Saocarlense Avenue, 13566-590 São Carlos, São Paulo, Brazil.
Magn Reson Imaging. 2024 Jun;109:134-146. doi: 10.1016/j.mri.2024.03.021. Epub 2024 Mar 19.
Accurate and efficient segmenting of vertebral bodies, muscles, and discs is crucial for analyzing various spinal diseases. However, traditional methods are either laborious and time-consuming (manual segmentation) or require extensive training data (fully automatic segmentation). FastCleverSeg, our proposed semi-automatic segmentation approach, addresses those limitations by significantly reducing user interaction while maintaining high accuracy. First, we reduce user interaction by requiring the manual annotation of only two or three slices. Next, we automatically Estimate the Annotation on Intermediary Slices (EANIS) using traditional computer vision/graphics concepts. Finally, our proposed method leverages improved voxel weight balancing to achieve fast and precise volumetric segmentation in the segmentation process. Experimental evaluations on our assembled diverse MRI databases comprising 179 patients (60 male, 119 female), demonstrate a remarkable 25 ms (30 ms standard deviation) processing time and a significant reduction in user interaction compared to existing approaches. Importantly, FastCleverSeg maintains or surpasses the segmentation quality of competing methods, achieving a Dice score of 94%. This invaluable tool empowers physicians to efficiently generate reliable ground truths, expediting the segmentation process and paving the way for future integration with deep learning approaches. In turn, this opens exciting possibilities for future fully automated spine segmentation.
准确、高效地分割椎体、肌肉和椎间盘对于分析各种脊柱疾病至关重要。然而,传统方法要么繁琐且耗时(手动分割),要么需要大量的训练数据(全自动分割)。我们提出的半自动分割方法 FastCleverSeg 克服了这些限制,在保持高精度的同时,大大减少了用户的交互操作。首先,我们通过仅要求手动注释两到三个切片来减少用户交互。接下来,我们使用传统的计算机视觉/图形概念自动估算中间切片的注释(EANIS)。最后,我们提出的方法利用改进的体素权重平衡,在分割过程中实现快速而精确的体积分割。在我们组装的包含 179 名患者(60 名男性,119 名女性)的多样化 MRI 数据库上进行的实验评估表明,与现有方法相比,FastCleverSeg 的处理时间显著缩短了 25 毫秒(30 毫秒标准差),并且用户交互明显减少。重要的是,FastCleverSeg 保持或超过了竞争方法的分割质量,达到了 94%的骰子分数。这个非常有价值的工具使医生能够有效地生成可靠的真实数据,加快分割过程,并为未来与深度学习方法的集成铺平道路。反过来,这为未来的全自动脊柱分割开辟了令人兴奋的可能性。