Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China.
Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China.
Neuroimage. 2024 Apr 15;290:120580. doi: 10.1016/j.neuroimage.2024.120580. Epub 2024 Mar 18.
Diagnosis of disorders of consciousness (DOC) remains a formidable challenge. Deep learning methods have been widely applied in general neurological and psychiatry disorders, while limited in DOC domain. Considering the successful use of resting-state functional MRI (rs-fMRI) for evaluating patients with DOC, this study seeks to explore the conjunction of deep learning techniques and rs-fMRI in precisely detecting awareness in DOC. We initiated our research with a benchmark dataset comprising 140 participants, including 76 unresponsive wakefulness syndrome (UWS), 25 minimally conscious state (MCS), and 39 Controls, from three independent sites. We developed a cascade 3D EfficientNet-B3-based deep learning framework tailored for discriminating MCS from UWS patients, referred to as "DeepDOC", and compared its performance against five state-of-the-art machine learning models. We also included an independent dataset consists of 11 DOC patients to test whether our model could identify patients with cognitive motor dissociation (CMD), in which DOC patients were behaviorally diagnosed unconscious but could be detected conscious by brain computer interface (BCI) method. Our results demonstrate that DeepDOC outperforms the five machine learning models, achieving an area under curve (AUC) value of 0.927 and accuracy of 0.861 for distinguishing MCS from UWS patients. More importantly, DeepDOC excels in CMD identification, achieving an AUC of 1 and accuracy of 0.909. Using gradient-weighted class activation mapping algorithm, we found that the posterior cortex, encompassing the visual cortex, posterior middle temporal gyrus, posterior cingulate cortex, precuneus, and cerebellum, as making a more substantial contribution to classification compared to other brain regions. This research offers a convenient and accurate method for detecting covert awareness in patients with MCS and CMD using rs-fMRI data.
意识障碍(DOC)的诊断仍然是一个艰巨的挑战。深度学习方法已广泛应用于一般神经和精神病学疾病,但在 DOC 领域的应用有限。鉴于静息态功能磁共振成像(rs-fMRI)在评估 DOC 患者方面的成功应用,本研究旨在探索深度学习技术与 rs-fMRI 的结合,以精确检测 DOC 中的意识。
我们从一个包含 140 名参与者的基准数据集开始研究,其中包括来自三个独立地点的 76 名无反应觉醒综合征(UWS)患者、25 名最小意识状态(MCS)患者和 39 名对照者。我们开发了一个基于 3D EfficientNet-B3 的级联深度学习框架,用于区分 MCS 和 UWS 患者,称为“DeepDOC”,并将其性能与五种最先进的机器学习模型进行了比较。我们还包括了一个由 11 名 DOC 患者组成的独立数据集,以测试我们的模型是否可以识别具有认知运动分离(CMD)的患者,其中 DOC 患者行为上被诊断为无意识,但可以通过脑机接口(BCI)方法检测到有意识。
我们的结果表明,DeepDOC 优于五种机器学习模型,在区分 MCS 和 UWS 患者方面,AUC 值为 0.927,准确率为 0.861。更重要的是,DeepDOC 在 CMD 识别方面表现出色,AUC 为 1,准确率为 0.909。使用梯度加权类激活映射算法,我们发现与其他大脑区域相比,后皮质(包括视觉皮质、后颞中回、后扣带回皮质、楔前叶和小脑)对分类的贡献更大。
这项研究提供了一种使用 rs-fMRI 数据方便、准确地检测 MCS 和 CMD 患者隐匿意识的方法。