Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
Brain. 2023 Jan 5;146(1):50-64. doi: 10.1093/brain/awac335.
Functional MRI (fMRI) and EEG may reveal residual consciousness in patients with disorders of consciousness (DoC), as reflected by a rapidly expanding literature on chronic DoC. However, acute DoC is rarely investigated, although identifying residual consciousness is key to clinical decision-making in the intensive care unit (ICU). Therefore, the objective of the prospective, observational, tertiary centre cohort, diagnostic phase IIb study 'Consciousness in neurocritical care cohort study using EEG and fMRI' (CONNECT-ME, NCT02644265) was to assess the accuracy of fMRI and EEG to identify residual consciousness in acute DoC in the ICU. Between April 2016 and November 2020, 87 acute DoC patients with traumatic or non-traumatic brain injury were examined with repeated clinical assessments, fMRI and EEG. Resting-state EEG and EEG with external stimulations were evaluated by visual analysis, spectral band analysis and a Support Vector Machine (SVM) consciousness classifier. In addition, within- and between-network resting-state connectivity for canonical resting-state fMRI networks was assessed. Next, we used EEG and fMRI data at study enrolment in two different machine-learning algorithms (Random Forest and SVM with a linear kernel) to distinguish patients in a minimally conscious state or better (≥MCS) from those in coma or unresponsive wakefulness state (≤UWS) at time of study enrolment and at ICU discharge (or before death). Prediction performances were assessed with area under the curve (AUC). Of 87 DoC patients (mean age, 50.0 ± 18 years, 43% female), 51 (59%) were ≤UWS and 36 (41%) were ≥ MCS at study enrolment. Thirty-one (36%) patients died in the ICU, including 28 who had life-sustaining therapy withdrawn. EEG and fMRI predicted consciousness levels at study enrolment and ICU discharge, with maximum AUCs of 0.79 (95% CI 0.77-0.80) and 0.71 (95% CI 0.77-0.80), respectively. Models based on combined EEG and fMRI features predicted consciousness levels at study enrolment and ICU discharge with maximum AUCs of 0.78 (95% CI 0.71-0.86) and 0.83 (95% CI 0.75-0.89), respectively, with improved positive predictive value and sensitivity. Overall, both machine-learning algorithms (SVM and Random Forest) performed equally well. In conclusion, we suggest that acute DoC prediction models in the ICU be based on a combination of fMRI and EEG features, regardless of the machine-learning algorithm used.
功能磁共振成像 (fMRI) 和脑电图可能会揭示意识障碍 (DoC) 患者的残留意识,这反映在慢性 DoC 的不断扩展的文献中。然而,急性 DoC 很少被研究,尽管识别残留意识是重症监护病房 (ICU) 临床决策的关键。因此,前瞻性、观察性、三级中心队列、诊断二期 b 研究“使用脑电图和 fMRI 的神经危重病患者意识队列研究”(CONNECT-ME,NCT02644265) 的目的是评估 fMRI 和脑电图在 ICU 中识别急性 DoC 患者残留意识的准确性。2016 年 4 月至 2020 年 11 月,对 87 例因创伤性或非创伤性脑损伤而出现急性 DoC 的患者进行了重复的临床评估、 fMRI 和脑电图检查。静息状态脑电图和带有外部刺激的脑电图通过视觉分析、频谱带分析和支持向量机 (SVM) 意识分类器进行评估。此外,还评估了典型静息状态 fMRI 网络的网络内和网络间静息状态连通性。接下来,我们使用研究入组时的 EEG 和 fMRI 数据,在两种不同的机器学习算法(随机森林和带线性核的 SVM)中,将处于最小意识状态或更好(≥MCS)的患者与昏迷或无反应觉醒状态(≤UWS)的患者区分开来在研究入组时和 ICU 出院时(或死亡前)。使用曲线下面积 (AUC) 评估预测性能。在 87 例 DoC 患者中(平均年龄 50.0 ± 18 岁,43%为女性),51 例(59%)在研究入组时≤UWS,36 例(41%)≥MCS。31 例(36%)患者在 ICU 死亡,其中 28 例患者停止了维持生命的治疗。脑电图和 fMRI 预测了研究入组时和 ICU 出院时的意识水平,最大 AUC 分别为 0.79(95%CI 0.77-0.80)和 0.71(95%CI 0.77-0.80)。基于 EEG 和 fMRI 特征组合的模型预测了研究入组时和 ICU 出院时的意识水平,最大 AUC 分别为 0.78(95%CI 0.71-0.86)和 0.83(95%CI 0.75-0.89),具有更高的阳性预测值和灵敏度。总的来说,两种机器学习算法(SVM 和随机森林)的性能都很好。因此,我们建议 ICU 中的急性 DoC 预测模型应基于 fMRI 和 EEG 特征的组合,而与使用的机器学习算法无关。