Unit of Environmental Engineering, Department of Infrastructure, University of Innsbruck, Technikerstrasse 13, 6020, Innsbruck, Austria.
Interactive Graphics and Simulation Group, University of Innsbruck, Innsbruck, Austria.
Sci Rep. 2024 Mar 20;14(1):6732. doi: 10.1038/s41598-024-57238-0.
Eminent in pandemic management is accurate information on infection dynamics to plan for timely installation of control measures and vaccination campaigns. Despite huge efforts in diagnostic testing of individuals, the underestimation of the actual number of SARS-CoV-2 infections remains significant due to the large number of undocumented cases. In this paper we demonstrate and compare three methods to estimate the dynamics of true infections based on secondary data i.e., (a) test positivity, (b) infection fatality and (c) wastewater monitoring. The concept is tested with Austrian data on a national basis for the period of April 2020 to December 2022. Further, we use the results of prevalence studies from the same period to generate (upper and lower bounds of) credible intervals for true infections for four data points. Model parameters are subsequently estimated by applying Approximate Bayesian Computation-rejection sampling and Genetic Algorithms. The method is then validated for the case study Vienna. We find that all three methods yield fairly similar results for estimating the true number of infections, which supports the idea that all three datasets contain similar baseline information. None of them is considered superior, as their advantages and shortcomings depend on the specific case study at hand.
在大流行管理中,准确的感染动态信息对于及时实施控制措施和疫苗接种活动的规划至关重要。尽管在对个人进行诊断检测方面做出了巨大努力,但由于大量未记录的病例,实际感染 SARS-CoV-2 人数的低估仍然很严重。在本文中,我们展示并比较了三种基于二次数据估计真实感染动态的方法,即(a) 检测阳性率,(b) 感染病死率和(c) 废水监测。该概念在 2020 年 4 月至 2022 年 12 月期间基于奥地利全国数据进行了测试。此外,我们还使用同期患病率研究的结果,为四个数据点的真实感染产生(可信区间的上限和下限)。随后,通过应用近似贝叶斯计算-拒绝采样和遗传算法来估计模型参数。然后,我们针对维也纳的案例研究对该方法进行了验证。我们发现,所有三种方法在估计真实感染人数方面都得出了相当相似的结果,这支持了所有三种数据集都包含类似基线信息的观点。没有一种方法被认为是优越的,因为它们的优缺点取决于具体的案例研究。