文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

俄罗斯圣彼得堡的 COVID-19 疫情:结合基于人群的血清学研究和监测数据。

COVID-19 pandemic in Saint Petersburg, Russia: Combining population-based serological study and surveillance data.

机构信息

European University at St. Petersburg, St. Petersburg, Russia.

Petrov National Research Medical Center of Oncology, Pesochny, St. Petersburg, Russia.

出版信息

PLoS One. 2022 Jun 15;17(6):e0266945. doi: 10.1371/journal.pone.0266945. eCollection 2022.


DOI:10.1371/journal.pone.0266945
PMID:35704649
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9200332/
Abstract

BACKGROUND: The COVID-19 pandemic in Russia has already resulted in 500,000 excess deaths, with more than 5.6 million cases registered officially by July 2021. Surveillance based on case reporting has become the core pandemic monitoring method in the country and globally. However, population-based seroprevalence studies may provide an unbiased estimate of the actual disease spread and, in combination with multiple surveillance tools, help to define the pandemic course. This study summarises results from four consecutive serological surveys conducted between May 2020 and April 2021 at St. Petersburg, Russia and combines them with other SARS-CoV-2 surveillance data. METHODS: We conducted four serological surveys of two random samples (May-June, July-August, October-December 2020, and February-April 2021) from adults residing in St. Petersburg recruited with the random digit dialing (RDD), accompanied by a telephone interview to collect information on both individuals who accepted and declined the invitation for testing and account for non-response. We have used enzyme-linked immunosorbent assay CoronaPass total antibodies test (Genetico, Moscow, Russia) to report seroprevalence. We corrected the estimates for non-response using the bivariate probit model and also accounted the test performance characteristics, obtained from independent assay evaluation. In addition, we have summarised the official registered cases statistics, the number of hospitalised patients, the number of COVID-19 deaths, excess deaths, tests performed, data from the ongoing SARS-CoV-2 variants of concern (VOC) surveillance, the vaccination uptake, and St. Petersburg search and mobility trends. The infection fatality ratios (IFR) have been calculated using the Bayesian evidence synthesis model. FINDINGS: After calling 113,017 random mobile phones we have reached 14,118 individuals who responded to computer-assisted telephone interviewing (CATI) and 2,413 provided blood samples at least once through the seroprevalence study. The adjusted seroprevalence in May-June, 2020 was 9.7% (95%: 7.7-11.7), 13.3% (95% 9.9-16.6) in July-August, 2020, 22.9% (95%: 20.3-25.5) in October-December, 2021 and 43.9% (95%: 39.7-48.0) in February-April, 2021. History of any symptoms, history of COVID-19 tests, and non-smoking status were significant predictors for higher seroprevalence. Most individuals remained seropositive with a maximum 10 months follow-up. 92.7% (95% CI 87.9-95.7) of participants who have reported at least one vaccine dose were seropositive. Hospitalisation and COVID-19 death statistics and search terms trends reflected the pandemic course better than the official case count, especially during the spring 2020. SARS-CoV-2 circulation showed rather low genetic SARS-CoV-2 lineages diversity that increased in the spring 2021. Local VOC (AT.1) was spreading till April 2021, but B.1.617.2 substituted all other lineages by June 2021. The IFR based on the excess deaths was equal to 1.04 (95% CI 0.80-1.31) for the adult population and 0.86% (95% CI 0.66-1.08) for the entire population. CONCLUSION: Approximately one year after the COVID-19 pandemic about 45% of St. Petersburg, Russia residents contracted the SARS-CoV-2 infection. Combined with vaccination uptake of about 10% it was enough to slow the pandemic at the present level of all mitigation measures until the Delta VOC started to spread. Combination of several surveillance tools provides a comprehensive pandemic picture.

摘要

背景:俄罗斯的 COVID-19 大流行已经导致 50 万人超额死亡,截至 2021 年 7 月,官方登记的病例超过 560 万。基于病例报告的监测已成为该国和全球核心的大流行监测方法。然而,基于人群的血清流行率研究可能提供对实际疾病传播的无偏估计,并且与多种监测工具相结合,有助于定义大流行进程。本研究总结了 2020 年 5 月至 2021 年 4 月期间在俄罗斯圣彼得堡进行的四项连续血清学调查的结果,并将其与其他 SARS-CoV-2 监测数据相结合。

方法:我们对居住在圣彼得堡的成年人进行了两次随机样本(2020 年 5 月至 6 月、7 月至 8 月、10 月至 12 月和 2021 年 2 月至 4 月)的四项血清学调查,采用随机数字拨号(RDD)招募,同时进行电话访谈,以收集接受和拒绝测试的个人信息以及非响应的原因。我们使用酶联免疫吸附测定法(ELISA)CoronaPass 总抗体检测试剂盒(俄罗斯莫斯科 Genetico 公司)报告血清流行率。我们使用双变量概率模型纠正非响应估计,并考虑了从独立检测评估中获得的测试性能特征。此外,我们还总结了官方登记的病例统计数据、住院患者人数、COVID-19 死亡人数、超额死亡人数、检测数量、正在进行的 SARS-CoV-2 变体关注(VOC)监测数据、疫苗接种率以及圣彼得堡搜索和流动趋势。使用贝叶斯证据综合模型计算感染死亡率(IFR)。

结果:在拨打了 113017 个随机手机号码后,我们联系到了 14118 名接受计算机辅助电话访谈(CATI)的个人,其中 2413 人至少通过血清流行率研究提供了一次血液样本。2020 年 5 月至 6 月的调整血清流行率为 9.7%(95%置信区间:7.7-11.7),2020 年 7 月至 8 月为 13.3%(95%置信区间:9.9-16.6),2021 年 10 月至 12 月为 22.9%(95%置信区间:20.3-25.5),2021 年 2 月至 4 月为 43.9%(95%置信区间:39.7-48.0)。有任何症状史、COVID-19 检测史和非吸烟状态是血清流行率较高的显著预测因素。大多数人在 10 个月的随访中仍保持血清阳性。报告至少接种一剂疫苗的参与者中,92.7%(95%置信区间:87.9-95.7)为血清阳性。住院和 COVID-19 死亡统计数据以及搜索词趋势比官方病例数更好地反映了大流行进程,尤其是在 2020 年春季。SARS-CoV-2 传播显示出相当低的 SARS-CoV-2 谱系多样性,这种多样性在 2021 年春季有所增加。当地 VOC(AT.1)一直传播到 2021 年 4 月,但 B.1.617.2 在 2021 年 6 月取代了所有其他谱系。基于超额死亡的 IFR 对于成年人口为 1.04(95%置信区间:0.80-1.31),对于整个人口为 0.86%(95%置信区间:0.66-1.08)。

结论:COVID-19 大流行大约一年后,俄罗斯圣彼得堡约有 45%的居民感染了 SARS-CoV-2。加上约 10%的疫苗接种率,足以在所有缓解措施的现有水平上减缓大流行,直到 Delta VOC 开始传播。多种监测工具的结合提供了全面的大流行情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a54c/9200332/9714ca20519c/pone.0266945.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a54c/9200332/eab495bc1f27/pone.0266945.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a54c/9200332/b63f17ed39fe/pone.0266945.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a54c/9200332/9714ca20519c/pone.0266945.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a54c/9200332/eab495bc1f27/pone.0266945.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a54c/9200332/b63f17ed39fe/pone.0266945.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a54c/9200332/9714ca20519c/pone.0266945.g003.jpg

相似文献

[1]
COVID-19 pandemic in Saint Petersburg, Russia: Combining population-based serological study and surveillance data.

PLoS One. 2022

[2]
Seroprevalence of SARS-CoV-2 antibodies in Saint Petersburg, Russia: a population-based study.

Sci Rep. 2021-6-21

[3]
Evaluation of the performance of SARS--CoV--2 antibody assays for a longitudinal population-based study of COVID--19 spread in St. Petersburg, Russia.

J Med Virol. 2021-10

[4]
Estimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: a statistical analysis.

Lancet. 2022-6-25

[5]
COVID-19 vaccines effectiveness against symptomatic SARS-CoV-2 during Delta variant surge: a preliminary assessment from a case-control study in St. Petersburg, Russia.

BMC Public Health. 2022-9-22

[6]
Longitudinal Randomized Cohort Study of SARS-CoV-2 Antibody Seroprevalence in the St. Petersburg Population.

Viruses. 2022-4-27

[7]
Seroprevalence of Unidentified SARS-CoV-2 Infection in Hong Kong During 3 Pandemic Waves.

JAMA Netw Open. 2021-11-1

[8]
SARS-CoV-2 Seroprevalence Structure of the Russian Population during the COVID-19 Pandemic.

Viruses. 2021-8-19

[9]
Variation in the COVID-19 infection-fatality ratio by age, time, and geography during the pre-vaccine era: a systematic analysis.

Lancet. 2022-4-16

[10]
Effectiveness and cost-effectiveness of four different strategies for SARS-CoV-2 surveillance in the general population (CoV-Surv Study): a structured summary of a study protocol for a cluster-randomised, two-factorial controlled trial.

Trials. 2021-1-8

引用本文的文献

[1]
The Global COVID-19 Pandemic Experience: Innovation Through Environmental Assessment and Seropositivity Surveillance.

Int J Environ Res Public Health. 2025-7-18

[2]
Dynamics of SARS-CoV-2 lineages in children and adults in 2021 and 2022.

PLoS One. 2024-12-20

[3]
Spectrum of COVID-19 cases in Arkhangelsk, Northwest Russia: Findings from a population-based study linking serosurvey, registry data, and self-reports of symptoms.

PLoS One. 2024

[4]
Prevalence of SARS-CoV-2 Antibodies in Kosovo-Wide Population-Based Seroepidemiological Study.

Influenza Other Respir Viruses. 2024-9

[5]
Comparative Study of the Myocardium of Patients from Four COVID-19 Waves.

Diagnostics (Basel). 2023-5-7

[6]
Dynamics of SARS-CoV-2 Major Genetic Lineages in Moscow in the Context of Vaccine Prophylaxis.

Int J Mol Sci. 2022-11-24

[7]
COVID-19 vaccines effectiveness against symptomatic SARS-CoV-2 during Delta variant surge: a preliminary assessment from a case-control study in St. Petersburg, Russia.

BMC Public Health. 2022-9-22

[8]
Vaccine effectiveness against referral to hospital after SARS-CoV-2 infection in St. Petersburg, Russia, during the Delta variant surge: a test-negative case-control study.

BMC Med. 2022-9-20

[9]
High SARS-CoV-2 seroprevalence in Karaganda, Kazakhstan before the launch of COVID-19 vaccination.

PLoS One. 2022

本文引用的文献

[1]
The rise and spread of the SARS-CoV-2 AY.122 lineage in Russia.

Virus Evol. 2022-3-5

[2]
SARS-CoV-2 Seroprevalence in Germany.

Dtsch Arztebl Int. 2021-12-3

[3]
Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells.

Cell Rep Med. 2021-7-20

[4]
Tracking excess mortality across countries during the COVID-19 pandemic with the World Mortality Dataset.

Elife. 2021-6-30

[5]
Seroprevalence of SARS-CoV-2 antibodies in Saint Petersburg, Russia: a population-based study.

Sci Rep. 2021-6-21

[6]
SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness.

Lancet. 2021-6-26

[7]
Evaluation of the performance of SARS--CoV--2 antibody assays for a longitudinal population-based study of COVID--19 spread in St. Petersburg, Russia.

J Med Virol. 2021-10

[8]
Excess deaths associated with covid-19 pandemic in 2020: age and sex disaggregated time series analysis in 29 high income countries.

BMJ. 2021-5-19

[9]
Central obesity, smoking habit, and hypertension are associated with lower antibody titres in response to COVID-19 mRNA vaccine.

Diabetes Metab Res Rev. 2022-1

[10]
Excess mortality reveals Covid's true toll in Russia.

Signif (Oxf). 2021-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索