Department of Microbiology, Harvard Medical School, Boston, MA, USA.
Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
Nature. 2024 Apr;628(8008):657-663. doi: 10.1038/s41586-024-07216-3. Epub 2024 Mar 20.
In response to pathogen infection, gasdermin (GSDM) proteins form membrane pores that induce a host cell death process called pyroptosis. Studies of human and mouse GSDM pores have revealed the functions and architectures of assemblies comprising 24 to 33 protomers, but the mechanism and evolutionary origin of membrane targeting and GSDM pore formation remain unknown. Here we determine a structure of a bacterial GSDM (bGSDM) pore and define a conserved mechanism of pore assembly. Engineering a panel of bGSDMs for site-specific proteolytic activation, we demonstrate that diverse bGSDMs form distinct pore sizes that range from smaller mammalian-like assemblies to exceptionally large pores containing more than 50 protomers. We determine a cryo-electron microscopy structure of a Vitiosangium bGSDM in an active 'slinky'-like oligomeric conformation and analyse bGSDM pores in a native lipid environment to create an atomic-level model of a full 52-mer bGSDM pore. Combining our structural analysis with molecular dynamics simulations and cellular assays, our results support a stepwise model of GSDM pore assembly and suggest that a covalently bound palmitoyl can leave a hydrophobic sheath and insert into the membrane before formation of the membrane-spanning β-strand regions. These results reveal the diversity of GSDM pores found in nature and explain the function of an ancient post-translational modification in enabling programmed host cell death.
针对病原体感染,gasdermin(GSDM)蛋白形成膜孔,诱导细胞发生一种称为细胞焦亡的死亡过程。对人类和小鼠 GSDM 孔的研究揭示了包含 24 到 33 个原聚体的组装体的功能和结构,但膜靶向和 GSDM 孔形成的机制和进化起源仍不清楚。在这里,我们确定了细菌 GSDM(bGSDM)孔的结构,并定义了孔组装的保守机制。通过对一组 bGSDM 进行特异性蛋白水解激活的工程改造,我们证明了不同的 bGSDM 形成了不同大小的孔,从小鼠样的孔到包含 50 多个原聚体的异常大的孔。我们确定了 Vitiosangium bGSDM 在活性“蛇形”寡聚构象下的低温电子显微镜结构,并在天然脂质环境中分析 bGSDM 孔,以创建一个完整的 52 聚体 bGSDM 孔的原子水平模型。结合我们的结构分析、分子动力学模拟和细胞测定结果,我们的结果支持 GSDM 孔组装的逐步模型,并表明共价结合的棕榈酰基可以在形成跨膜β-折叠区之前离开疏水区并插入膜中。这些结果揭示了自然界中发现的 GSDM 孔的多样性,并解释了这种古老的翻译后修饰在促进程序性细胞死亡中的功能。