Suppr超能文献

气胀素 A3 膜孔的冷冻电镜结构。

Cryo-EM structure of the gasdermin A3 membrane pore.

机构信息

Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.

出版信息

Nature. 2018 May;557(7703):62-67. doi: 10.1038/s41586-018-0058-6. Epub 2018 Apr 25.

Abstract

Gasdermins mediate inflammatory cell death after cleavage by caspases or other, unknown enzymes. The cleaved N-terminal fragments bind to acidic membrane lipids to form pores, but the mechanism of pore formation remains unresolved. Here we present the cryo-electron microscopy structures of the 27-fold and 28-fold single-ring pores formed by the N-terminal fragment of mouse GSDMA3 (GSDMA3-NT) at 3.8 and 4.2 Å resolutions, and of a double-ring pore at 4.6 Å resolution. In the 27-fold pore, a 108-stranded anti-parallel β-barrel is formed by two β-hairpins from each subunit capped by a globular domain. We identify a positively charged helix that interacts with the acidic lipid cardiolipin. GSDMA3-NT undergoes radical conformational changes upon membrane insertion to form long, membrane-spanning β-strands. We also observe an unexpected additional symmetric ring of GSDMA3-NT subunits that does not insert into the membrane in the double-ring pore, which may represent a pre-pore state of GSDMA3-NT. These structures provide a basis that explains the activities of several mutant gasdermins, including defective mutants that are associated with cancer.

摘要

Gasdermins 介导了被半胱天冬酶或其他未知酶切割后的炎症细胞死亡。裂解的 N 端片段与酸性膜脂质结合形成孔,但孔形成的机制仍未解决。在这里,我们展示了在 3.8 和 4.2Å分辨率下,由小鼠 GSDMA3(GSDMA3-NT)的 N 端片段形成的 27 倍和 28 倍单环孔,以及在 4.6Å分辨率下的双环孔的冷冻电镜结构。在 27 倍孔中,由每个亚基的两个 β-发夹形成的 108 股反平行 β-桶被球状结构域覆盖。我们确定了一个正电荷的螺旋与酸性脂质心磷脂相互作用。GSDMA3-NT 在插入膜时发生剧烈的构象变化,形成长的、跨膜的 β-链。我们还观察到双环孔中未插入膜中的 GSDMA3-NT 亚基的意外的额外对称环,这可能代表 GSDMA3-NT 的前孔状态。这些结构提供了一个基础,解释了几种突变型 gasdermins 的活性,包括与癌症相关的缺陷型突变体。

相似文献

1
Cryo-EM structure of the gasdermin A3 membrane pore.
Nature. 2018 May;557(7703):62-67. doi: 10.1038/s41586-018-0058-6. Epub 2018 Apr 25.
2
Pore-forming activity and structural autoinhibition of the gasdermin family.
Nature. 2016 Jul 7;535(7610):111-6. doi: 10.1038/nature18590. Epub 2016 Jun 8.
3
Cryo-EM structures of perforin-2 in isolation and assembled on a membrane suggest a mechanism for pore formation.
EMBO J. 2022 Dec 1;41(23):e111857. doi: 10.15252/embj.2022111857. Epub 2022 Oct 17.
4
Single-particle cryo-EM reveals conformational variability of the oligomeric VCC β-barrel pore in a lipid bilayer.
J Cell Biol. 2021 Dec 6;220(12). doi: 10.1083/jcb.202102035. Epub 2021 Oct 7.
6
Structure and assembly of a bacterial gasdermin pore.
Nature. 2024 Apr;628(8008):657-663. doi: 10.1038/s41586-024-07216-3. Epub 2024 Mar 20.
7
Not sorcery after all: Roles of multiple charged residues in membrane insertion of gasdermin-A3.
Front Cell Dev Biol. 2022 Sep 2;10:958957. doi: 10.3389/fcell.2022.958957. eCollection 2022.
8
Conformational changes during pore formation by the perforin-related protein pleurotolysin.
PLoS Biol. 2015 Feb 5;13(2):e1002049. doi: 10.1371/journal.pbio.1002049. eCollection 2015 Feb.
10
Mechanism of membrane pore formation by human gasdermin-D.
EMBO J. 2018 Jul 13;37(14). doi: 10.15252/embj.201798321. Epub 2018 Jun 13.

引用本文的文献

1
Regulated cell death in fungi from a comparative immunology perspective.
Cell Death Differ. 2025 Sep 3. doi: 10.1038/s41418-025-01570-z.
4
From mechanism to application: programmed cell death pathways in nanomedicine-driven cancer therapies.
Bioact Mater. 2025 Jul 1;52:773-809. doi: 10.1016/j.bioactmat.2025.06.052. eCollection 2025 Oct.
5
Deciphering the language of mingling lipids and proteins.
Curr Opin Struct Biol. 2025 Jun;92:103061. doi: 10.1016/j.sbi.2025.103061. Epub 2025 May 7.
6
Modeling Necroptotic and Pyroptotic Signaling in .
Biomolecules. 2025 Apr 4;15(4):530. doi: 10.3390/biom15040530.
7
Functional Materials Targeted Regulation of Gasdermins: From Fundamentals to Functionalities and Applications.
Adv Sci (Weinh). 2025 Apr;12(16):e2500873. doi: 10.1002/advs.202500873. Epub 2025 Mar 24.
8
Liver injury in sepsis: manifestations, mechanisms and emerging therapeutic strategies.
Front Immunol. 2025 Mar 28;16:1575554. doi: 10.3389/fimmu.2025.1575554. eCollection 2025.
9
10
Pyroptosis: molecular mechanisms and roles in disease.
Cell Res. 2025 May;35(5):334-344. doi: 10.1038/s41422-025-01107-6. Epub 2025 Apr 3.

本文引用的文献

1
The Pore-Forming Protein Gasdermin D Regulates Interleukin-1 Secretion from Living Macrophages.
Immunity. 2018 Jan 16;48(1):35-44.e6. doi: 10.1016/j.immuni.2017.11.013. Epub 2017 Nov 28.
3
Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin.
Nature. 2017 Jul 6;547(7661):99-103. doi: 10.1038/nature22393. Epub 2017 May 1.
5
MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy.
Nat Methods. 2017 Apr;14(4):331-332. doi: 10.1038/nmeth.4193. Epub 2017 Feb 27.
7
GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death.
EMBO J. 2016 Aug 15;35(16):1766-78. doi: 10.15252/embj.201694696. Epub 2016 Jul 14.
9
Active Caspase-1 Induces Plasma Membrane Pores That Precede Pyroptotic Lysis and Are Blocked by Lanthanides.
J Immunol. 2016 Aug 15;197(4):1353-67. doi: 10.4049/jimmunol.1600699. Epub 2016 Jul 6.
10
Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores.
Nature. 2016 Jul 7;535(7610):153-8. doi: 10.1038/nature18629.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验