Tropical Agriculture and Forestry College, Hainan University, Haikou, Hainan Province, China.
PLoS One. 2024 Mar 21;19(3):e0297284. doi: 10.1371/journal.pone.0297284. eCollection 2024.
Addressing the profound impact of Tapping Panel Dryness (TPD) on yield and quality in the global rubber industry, this study introduces a cutting-edge Otsu threshold segmentation technique, enhanced by Dung Beetle Optimization (DBO-Otsu). This innovative approach optimizes the segmentation threshold combination by accelerating convergence and diversifying search methodologies. Following initial segmentation, TPD severity levels are meticulously assessed using morphological characteristics, enabling precise determination of optimal thresholds for final segmentation. The efficacy of DBO-Otsu is rigorously evaluated against mainstream benchmarks like Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Feature Similarity Index (FSIM), and compared with six contemporary swarm intelligence algorithms. The findings reveal that DBO-Otsu substantially surpasses its counterparts in image segmentation quality and processing speed. Further empirical analysis on a dataset comprising TPD cases from level 1 to 5 underscores the algorithm's practical utility, achieving an impressive 80% accuracy in severity level identification and underscoring its potential for TPD image segmentation and recognition tasks.
本研究针对全球橡胶产业中 Tapping Panel Dryness(TPD)对产量和质量的深远影响,引入了一种前沿的 Otsu 阈值分割技术,并通过 dung beetle optimization(DBO-Otsu)进行了增强。这种创新方法通过加速收敛和多样化搜索方法来优化分割阈值组合。初始分割后,使用形态特征详细评估 TPD 严重程度级别,从而可以精确确定最终分割的最佳阈值。通过与主流基准(如峰值信噪比(PSNR)、结构相似性指数(SSIM)和特征相似性指数(FSIM))进行严格评估,并与六种当代群体智能算法进行比较,对 DBO-Otsu 的有效性进行了评估。研究结果表明,DBO-Otsu 在图像分割质量和处理速度方面明显优于其同类算法。在一个包含 TPD 严重程度为 1 到 5 的案例的数据集上进行的进一步实证分析突出了该算法的实际效用,在严重程度识别方面达到了令人印象深刻的 80%的准确率,并强调了其在 TPD 图像分割和识别任务中的潜力。