文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度特征融合模型的蜣螂优化算法用于肺癌检测与分类

Dung Beetle Optimization with Deep Feature Fusion Model for Lung Cancer Detection and Classification.

作者信息

Alamgeer Mohammad, Alruwais Nuha, Alshahrani Haya Mesfer, Mohamed Abdullah, Assiri Mohammed

机构信息

Department of Information Systems, College of Science & Art at Mahayil, King Khalid University, Abha 61421, Saudi Arabia.

Department of Computer Science and Engineering, College of Applied Studies and Community Services, King Saud University, P.O. Box 22459, Riyadh 11495, Saudi Arabia.

出版信息

Cancers (Basel). 2023 Aug 5;15(15):3982. doi: 10.3390/cancers15153982.


DOI:10.3390/cancers15153982
PMID:37568800
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10417684/
Abstract

Lung cancer is the main cause of cancer deaths all over the world. An important reason for these deaths was late analysis and worse prediction. With the accelerated improvement of deep learning (DL) approaches, DL can be effectively and widely executed for several real-world applications in healthcare systems, like medical image interpretation and disease analysis. Medical imaging devices can be vital in primary-stage lung tumor analysis and the observation of lung tumors from the treatment. Many medical imaging modalities like computed tomography (CT), chest X-ray (CXR), molecular imaging, magnetic resonance imaging (MRI), and positron emission tomography (PET) systems are widely analyzed for lung cancer detection. This article presents a new dung beetle optimization modified deep feature fusion model for lung cancer detection and classification (DBOMDFF-LCC) technique. The presented DBOMDFF-LCC technique mainly depends upon the feature fusion and hyperparameter tuning process. To accomplish this, the DBOMDFF-LCC technique uses a feature fusion process comprising three DL models, namely residual network (ResNet), densely connected network (DenseNet), and Inception-ResNet-v2. Furthermore, the DBO approach was employed for the optimum hyperparameter selection of three DL approaches. For lung cancer detection purposes, the DBOMDFF-LCC system utilizes a long short-term memory (LSTM) approach. The simulation result analysis of the DBOMDFF-LCC technique of the medical dataset is investigated using different evaluation metrics. The extensive comparative results highlighted the betterment of the DBOMDFF-LCC technique of lung cancer classification.

摘要

肺癌是全球癌症死亡的主要原因。这些死亡的一个重要原因是分析延迟和预测不佳。随着深度学习(DL)方法的加速改进,DL可以在医疗系统中的多个实际应用中得到有效且广泛的应用,如医学图像解释和疾病分析。医学成像设备在原发性肺癌分析和肺癌治疗观察中至关重要。许多医学成像模态,如计算机断层扫描(CT)、胸部X光(CXR)、分子成像、磁共振成像(MRI)和正电子发射断层扫描(PET)系统,都被广泛用于肺癌检测分析。本文提出了一种用于肺癌检测和分类的新型粪甲虫优化改进深度特征融合模型(DBOMDFF-LCC)技术。所提出的DBOMDFF-LCC技术主要依赖于特征融合和超参数调整过程。为实现这一目标,DBOMDFF-LCC技术使用了一个由三个DL模型组成的特征融合过程,即残差网络(ResNet)、密集连接网络(DenseNet)和Inception-ResNet-v2。此外,DBO方法被用于三种DL方法的最优超参数选择。为了进行肺癌检测,DBOMDFF-LCC系统采用了长短期记忆(LSTM)方法。使用不同的评估指标对医学数据集的DBOMDFF-LCC技术的仿真结果进行了分析。广泛的对比结果突出了DBOMDFF-LCC技术在肺癌分类方面的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/929c/10417684/56ee9d6b01d2/cancers-15-03982-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/929c/10417684/2dfab9805773/cancers-15-03982-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/929c/10417684/8f2b16259bbe/cancers-15-03982-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/929c/10417684/3036fc57129d/cancers-15-03982-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/929c/10417684/00da1b69d59c/cancers-15-03982-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/929c/10417684/da2973f7422e/cancers-15-03982-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/929c/10417684/95d88765ea05/cancers-15-03982-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/929c/10417684/8854a0ad4fbd/cancers-15-03982-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/929c/10417684/56ee9d6b01d2/cancers-15-03982-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/929c/10417684/2dfab9805773/cancers-15-03982-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/929c/10417684/8f2b16259bbe/cancers-15-03982-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/929c/10417684/3036fc57129d/cancers-15-03982-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/929c/10417684/00da1b69d59c/cancers-15-03982-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/929c/10417684/da2973f7422e/cancers-15-03982-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/929c/10417684/95d88765ea05/cancers-15-03982-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/929c/10417684/8854a0ad4fbd/cancers-15-03982-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/929c/10417684/56ee9d6b01d2/cancers-15-03982-g008.jpg

相似文献

[1]
Dung Beetle Optimization with Deep Feature Fusion Model for Lung Cancer Detection and Classification.

Cancers (Basel). 2023-8-5

[2]
Exploiting histopathological imaging for early detection of lung and colon cancer via ensemble deep learning model.

Sci Rep. 2024-9-3

[3]
Improving remote sensing scene classification using dung Beetle optimization with enhanced deep learning approach.

Heliyon. 2024-8-30

[4]
Al-Biruni Earth Radius Optimization with Transfer Learning Based Histopathological Image Analysis for Lung and Colon Cancer Detection.

Cancers (Basel). 2023-6-23

[5]
Computer-aided diagnosis for lung cancer using waterwheel plant algorithm with deep learning.

Sci Rep. 2024-9-4

[6]
Equilibrium Optimization Algorithm with Ensemble Learning Based Cervical Precancerous Lesion Classification Model.

Healthcare (Basel). 2022-12-25

[7]
Overall Survival Prognostic Modelling of Non-small Cell Lung Cancer Patients Using Positron Emission Tomography/Computed Tomography Harmonised Radiomics Features: The Quest for the Optimal Machine Learning Algorithm.

Clin Oncol (R Coll Radiol). 2022-2

[8]
Advanced mathematical modeling of mitigating security threats in smart grids through deep ensemble model.

Sci Rep. 2024-10-4

[9]
Deep feature fusion with computer vision driven fall detection approach for enhanced assisted living safety.

Sci Rep. 2024-9-15

[10]
Recurrent feature fusion learning for multi-modality pet-ct tumor segmentation.

Comput Methods Programs Biomed. 2021-5

引用本文的文献

[1]
Editorial for Special Issue "Image Analysis and Machine Learning in Cancers".

Cancers (Basel). 2025-2-25

[2]
An Adaptive Spiral Strategy Dung Beetle Optimization Algorithm: Research and Applications.

Biomimetics (Basel). 2024-8-29

[3]
A novel multi-objective dung beetle optimizer for Multi-UAV cooperative path planning.

Heliyon. 2024-9-4

[4]
Computer-aided diagnosis for lung cancer using waterwheel plant algorithm with deep learning.

Sci Rep. 2024-9-4

[5]
Phosphorus prediction in the middle reaches of the Yangtze river based on GRA-CEEMDAN-CNLSTM-DBO.

Sci Rep. 2024-8-21

[6]
Advancing image segmentation with DBO-Otsu: Addressing rubber tree diseases through enhanced threshold techniques.

PLoS One. 2024

本文引用的文献

[1]
Unsupervised Medical Image Translation With Adversarial Diffusion Models.

IEEE Trans Med Imaging. 2023-12

[2]
Automated Pneumonia Based Lung Diseases Classification with Robust Technique Based on a Customized Deep Learning Approach.

Diagnostics (Basel). 2023-1-10

[3]
A deep learning based dual encoder-decoder framework for anatomical structure segmentation in chest X-ray images.

Sci Rep. 2023-1-16

[4]
An Explainable AI-Enabled Framework for Interpreting Pulmonary Diseases from Chest Radiographs.

Cancers (Basel). 2023-1-3

[5]
Identification of Asymptomatic COVID-19 Patients on Chest CT Images Using Transformer-Based or Convolutional Neural Network-Based Deep Learning Models.

J Digit Imaging. 2023-6

[6]
BMAnet: Boundary Mining With Adversarial Learning for Semi-Supervised 2D Myocardial Infarction Segmentation.

IEEE J Biomed Health Inform. 2023-1

[7]
ResViT: Residual Vision Transformers for Multimodal Medical Image Synthesis.

IEEE Trans Med Imaging. 2022-10

[8]
Adaptive Multimodal Fusion With Attention Guided Deep Supervision Net for Grading Hepatocellular Carcinoma.

IEEE J Biomed Health Inform. 2022-8

[9]
Deep Learning With Radiomics for Disease Diagnosis and Treatment: Challenges and Potential.

Front Oncol. 2022-2-17

[10]
A Deep Learning Based Approach for Patient Pulmonary CT Image Screening to Predict Coronavirus (SARS-CoV-2) Infection.

Diagnostics (Basel). 2021-9-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索