Alamgeer Mohammad, Alruwais Nuha, Alshahrani Haya Mesfer, Mohamed Abdullah, Assiri Mohammed
Department of Information Systems, College of Science & Art at Mahayil, King Khalid University, Abha 61421, Saudi Arabia.
Department of Computer Science and Engineering, College of Applied Studies and Community Services, King Saud University, P.O. Box 22459, Riyadh 11495, Saudi Arabia.
Cancers (Basel). 2023 Aug 5;15(15):3982. doi: 10.3390/cancers15153982.
Lung cancer is the main cause of cancer deaths all over the world. An important reason for these deaths was late analysis and worse prediction. With the accelerated improvement of deep learning (DL) approaches, DL can be effectively and widely executed for several real-world applications in healthcare systems, like medical image interpretation and disease analysis. Medical imaging devices can be vital in primary-stage lung tumor analysis and the observation of lung tumors from the treatment. Many medical imaging modalities like computed tomography (CT), chest X-ray (CXR), molecular imaging, magnetic resonance imaging (MRI), and positron emission tomography (PET) systems are widely analyzed for lung cancer detection. This article presents a new dung beetle optimization modified deep feature fusion model for lung cancer detection and classification (DBOMDFF-LCC) technique. The presented DBOMDFF-LCC technique mainly depends upon the feature fusion and hyperparameter tuning process. To accomplish this, the DBOMDFF-LCC technique uses a feature fusion process comprising three DL models, namely residual network (ResNet), densely connected network (DenseNet), and Inception-ResNet-v2. Furthermore, the DBO approach was employed for the optimum hyperparameter selection of three DL approaches. For lung cancer detection purposes, the DBOMDFF-LCC system utilizes a long short-term memory (LSTM) approach. The simulation result analysis of the DBOMDFF-LCC technique of the medical dataset is investigated using different evaluation metrics. The extensive comparative results highlighted the betterment of the DBOMDFF-LCC technique of lung cancer classification.
肺癌是全球癌症死亡的主要原因。这些死亡的一个重要原因是分析延迟和预测不佳。随着深度学习(DL)方法的加速改进,DL可以在医疗系统中的多个实际应用中得到有效且广泛的应用,如医学图像解释和疾病分析。医学成像设备在原发性肺癌分析和肺癌治疗观察中至关重要。许多医学成像模态,如计算机断层扫描(CT)、胸部X光(CXR)、分子成像、磁共振成像(MRI)和正电子发射断层扫描(PET)系统,都被广泛用于肺癌检测分析。本文提出了一种用于肺癌检测和分类的新型粪甲虫优化改进深度特征融合模型(DBOMDFF-LCC)技术。所提出的DBOMDFF-LCC技术主要依赖于特征融合和超参数调整过程。为实现这一目标,DBOMDFF-LCC技术使用了一个由三个DL模型组成的特征融合过程,即残差网络(ResNet)、密集连接网络(DenseNet)和Inception-ResNet-v2。此外,DBO方法被用于三种DL方法的最优超参数选择。为了进行肺癌检测,DBOMDFF-LCC系统采用了长短期记忆(LSTM)方法。使用不同的评估指标对医学数据集的DBOMDFF-LCC技术的仿真结果进行了分析。广泛的对比结果突出了DBOMDFF-LCC技术在肺癌分类方面的优势。
Healthcare (Basel). 2022-12-25
Comput Methods Programs Biomed. 2021-5
Cancers (Basel). 2025-2-25
Biomimetics (Basel). 2024-8-29
IEEE Trans Med Imaging. 2023-12
Cancers (Basel). 2023-1-3
IEEE J Biomed Health Inform. 2023-1
IEEE Trans Med Imaging. 2022-10
IEEE J Biomed Health Inform. 2022-8
Diagnostics (Basel). 2021-9-21