Suppr超能文献

IDRM:基于增强 RIME 优化的脑肿瘤图像分割。

IDRM: Brain tumor image segmentation with boosted RIME optimization.

机构信息

School of Resources and Safety Engineering, Central South University, Changsha, 410083, China.

School of Humanities and Communication, Zhejiang Gongshang University, Hangzhou, 310000, China.

出版信息

Comput Biol Med. 2023 Nov;166:107551. doi: 10.1016/j.compbiomed.2023.107551. Epub 2023 Sep 30.

Abstract

Timely diagnosis of medical conditions can significantly mitigate the risks they pose to human life. Consequently, there is an urgent demand for an effective auxiliary model that assists physicians in accurately diagnosing medical conditions based on imaging data. While multi-threshold image segmentation models have garnered considerable attention due to their simplicity and ease of implementation, the selection of threshold combinations greatly influences the segmentation performance. Traditional optimization algorithms often require substantial time to address multi-threshold image segmentation problems, and their segmentation accuracy is frequently unsatisfactory. As a result, metaheuristic algorithms have been employed in this domain. However, several algorithms suffer from drawbacks such as premature convergence and inadequate exploration of the solution space when it comes to threshold selection. For instance, the recently proposed optimization algorithm RIME, inspired by the physical phenomenon of rime-ice, falls short in terms of avoiding local optima and fully exploring the solution space. Therefore, this study introduces an enhanced version of RIME, called IDRM, which incorporates an interactive mechanism and Gaussian diffusion strategy. The interactive mechanism facilitates information exchange among agents, enabling them to evolve towards more promising directions and increasing the likelihood of discovering the optimal solution. Additionally, the Gaussian diffusion strategy enhances the agents' local exploration capabilities and expands their search within the solution space, effectively preventing them from becoming trapped in local optima. Experimental results on 30 benchmark test functions demonstrate that IDRM exhibits favorable optimization performance across various optimization functions, showcasing its robustness and convergence properties. Furthermore, the algorithm is applied to select threshold combinations for brain tumor image segmentation, and the results are evaluated using metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM). The overall findings consistently highlight the exceptional performance of this approach, further validating the effectiveness of IDRM in addressing image segmentation problems.

摘要

及时诊断医疗状况可以显著降低它们对人类生命造成的风险。因此,迫切需要一种有效的辅助模型,帮助医生根据成像数据准确诊断医疗状况。虽然多阈值图像分割模型因其简单易用而受到广泛关注,但阈值组合的选择对分割性能有很大影响。传统的优化算法通常需要大量的时间来解决多阈值图像分割问题,并且它们的分割准确性往往不尽如人意。因此,元启发式算法已被应用于该领域。然而,当涉及到阈值选择时,一些算法存在过早收敛和对解空间的探索不足等问题。例如,最近提出的优化算法 RIME,受到霜冰物理现象的启发,在避免局部最优和充分探索解空间方面存在不足。因此,本研究提出了一种名为 IDRM 的 RIME 增强版本,它结合了交互机制和高斯扩散策略。交互机制促进了代理之间的信息交换,使它们能够朝着更有前途的方向进化,并增加发现最优解的可能性。此外,高斯扩散策略增强了代理的局部探索能力,并扩大了它们在解空间中的搜索范围,有效地防止它们陷入局部最优。在 30 个基准测试函数上的实验结果表明,IDRM 在各种优化函数上都表现出了良好的优化性能,展示了其鲁棒性和收敛特性。此外,该算法被应用于选择脑肿瘤图像分割的阈值组合,并使用峰值信噪比 (PSNR) 和结构相似性指数测量 (SSIM) 等指标对结果进行评估。总体研究结果一致突出了该方法的卓越性能,进一步验证了 IDRM 在解决图像分割问题方面的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验