Kukanja Petra, Langseth Christoffer M, Rubio Rodríguez-Kirby Leslie A, Agirre Eneritz, Zheng Chao, Raman Amitha, Yokota Chika, Avenel Christophe, Tiklová Katarina, Guerreiro-Cacais André O, Olsson Tomas, Hilscher Markus M, Nilsson Mats, Castelo-Branco Gonçalo
Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, 17177 Stockholm, Sweden.
Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, 17154 Stockholm, Sweden.
Cell. 2024 Apr 11;187(8):1990-2009.e19. doi: 10.1016/j.cell.2024.02.030. Epub 2024 Mar 20.
Multiple sclerosis (MS) is a neurological disease characterized by multifocal lesions and smoldering pathology. Although single-cell analyses provided insights into cytopathology, evolving cellular processes underlying MS remain poorly understood. We investigated the cellular dynamics of MS by modeling temporal and regional rates of disease progression in mouse experimental autoimmune encephalomyelitis (EAE). By performing single-cell spatial expression profiling using in situ sequencing (ISS), we annotated disease neighborhoods and found centrifugal evolution of active lesions. We demonstrated that disease-associated (DA)-glia arise independently of lesions and are dynamically induced and resolved over the disease course. Single-cell spatial mapping of human archival MS spinal cords confirmed the differential distribution of homeostatic and DA-glia, enabled deconvolution of active and inactive lesions into sub-compartments, and identified new lesion areas. By establishing a spatial resource of mouse and human MS neuropathology at a single-cell resolution, our study unveils the intricate cellular dynamics underlying MS.
多发性硬化症(MS)是一种以多灶性病变和隐匿性病理为特征的神经疾病。尽管单细胞分析为细胞病理学提供了见解,但MS潜在的不断演变的细胞过程仍知之甚少。我们通过对小鼠实验性自身免疫性脑脊髓炎(EAE)中疾病进展的时间和区域速率进行建模,研究了MS的细胞动力学。通过使用原位测序(ISS)进行单细胞空间表达谱分析,我们对疾病邻域进行了注释,并发现活跃病变呈离心式演变。我们证明,疾病相关(DA)神经胶质细胞独立于病变产生,并在疾病过程中动态诱导和消退。对人类存档的MS脊髓进行单细胞空间图谱分析,证实了稳态神经胶质细胞和DA神经胶质细胞的差异分布,能够将活跃和不活跃病变解卷积为亚区室,并识别出新的病变区域。通过以单细胞分辨率建立小鼠和人类MS神经病理学的空间资源,我们的研究揭示了MS潜在的复杂细胞动力学。