Suppr超能文献

专科验光师在面对模棱两可的深度学习输出时的诊断决策。

Diagnostic decisions of specialist optometrists exposed to ambiguous deep-learning outputs.

机构信息

University College London Interaction Centre (UCLIC), UCL, London, UK.

Institute of Ophthalmology, NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL, London, UK.

出版信息

Sci Rep. 2024 Mar 21;14(1):6775. doi: 10.1038/s41598-024-55410-0.

Abstract

Artificial intelligence (AI) has great potential in ophthalmology. We investigated how ambiguous outputs from an AI diagnostic support system (AI-DSS) affected diagnostic responses from optometrists when assessing cases of suspected retinal disease. Thirty optometrists (15 more experienced, 15 less) assessed 30 clinical cases. For ten, participants saw an optical coherence tomography (OCT) scan, basic clinical information and retinal photography ('no AI'). For another ten, they were also given AI-generated OCT-based probabilistic diagnoses ('AI diagnosis'); and for ten, both AI-diagnosis and AI-generated OCT segmentations ('AI diagnosis + segmentation') were provided. Cases were matched across the three types of presentation and were selected to include 40% ambiguous and 20% incorrect AI outputs. Optometrist diagnostic agreement with the predefined reference standard was lowest for 'AI diagnosis + segmentation' (204/300, 68%) compared to 'AI diagnosis' (224/300, 75% p = 0.010), and 'no Al' (242/300, 81%, p =  < 0.001). Agreement with AI diagnosis consistent with the reference standard decreased (174/210 vs 199/210, p = 0.003), but participants trusted the AI more (p = 0.029) with segmentations. Practitioner experience did not affect diagnostic responses (p = 0.24). More experienced participants were more confident (p = 0.012) and trusted the AI less (p = 0.038). Our findings also highlight issues around reference standard definition.

摘要

人工智能(AI)在眼科学中有很大的潜力。我们研究了当评估疑似视网膜疾病病例时,AI 诊断支持系统(AI-DSS)的模糊输出如何影响验光师的诊断反应。30 名验光师(15 名经验更丰富,15 名经验较少)评估了 30 个临床病例。对于其中 10 个病例,参与者查看了光学相干断层扫描(OCT)扫描、基本临床信息和视网膜摄影(“无 AI”)。对于另外 10 个病例,他们还获得了 AI 生成的基于 OCT 的概率诊断(“AI 诊断”);对于另外 10 个病例,他们同时获得了 AI 诊断和 AI 生成的 OCT 分割(“AI 诊断+分割”)。这些病例在三种呈现类型中进行了匹配,并选择了包括 40%模糊和 20%错误的 AI 输出。与预定义的参考标准相比,AI 诊断和分割(204/300,68%)的诊断一致性最低,低于 AI 诊断(224/300,75%,p=0.010)和无 AI(242/300,81%,p<0.001)。与参考标准一致的 AI 诊断的一致性降低(174/210 比 199/210,p=0.003),但参与者对分割的信任度更高(p=0.029)。执业经验并没有影响诊断反应(p=0.24)。更有经验的参与者更有信心(p=0.012),对 AI 的信任度更低(p=0.038)。我们的研究结果还突出了参考标准定义方面的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c864/10958016/ddf3bdf2dde1/41598_2024_55410_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验