Center for Gene Research, Nagoya University, Nagoya, Aichi, Japan.
Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan.
PeerJ. 2024 Mar 18;12:e17126. doi: 10.7717/peerj.17126. eCollection 2024.
The motility of species plays a pivotal role in their survival and adaptation to diverse environments and is intricately associated with pathogenicity in both humans and aquatic animals. Numerous mutant strains of have been generated using UV or EMS mutagenesis to probe flagellar motility using molecular genetic approaches. Identifying these mutations promises to yield valuable insights into motility at the protein structural physiology level. In this study, we determined the complete genomic structure of 4 reference specimens of laboratory . strains: a precursor strain, . 138-2, two strains showing defects in the lateral flagellum (VIO5 and YM4), and one strain showing defects in the polar flagellum (YM19). Subsequently, we meticulously ascertained the specific mutation sites within the 18 motility-deficient strains related to the polar flagellum (they fall into three categories: flagellar-deficient, multi-flagellar, and chemotaxis-deficient strains) by whole genome sequencing and mapping to the complete genome of parental strains VIO5 or YM4. The mutant strains had an average of 20.6 (±12.7) mutations, most of which were randomly distributed throughout the genome. However, at least two or more different mutations in six flagellar-related genes were detected in 18 mutants specifically selected as chemotaxis-deficient mutants. Genomic analysis using a large number of mutant strains is a very effective tool to comprehensively identify genes associated with specific phenotypes using forward genetics.
物种的运动性在其生存和适应多样化环境中起着关键作用,并且与人类和水生动物的致病性密切相关。已经使用 UV 或 EMS 诱变生成了大量的 突变株,以使用分子遗传方法探测鞭毛运动性。鉴定这些突变有望深入了解蛋白质结构生理学水平的运动性。在这项研究中,我们确定了实验室 4 个参考品系的完整基因组结构:一个前体菌株 ,. 138-2,两个表现出侧鞭毛缺陷的菌株(VIO5 和 YM4),以及一个表现出极性鞭毛缺陷的菌株(YM19)。随后,我们通过全基因组测序和与亲本菌株 VIO5 或 YM4 的完整基因组进行映射,仔细确定了与极性鞭毛相关的 18 个运动缺陷菌株中的特定突变位点(它们分为三类:鞭毛缺陷、多鞭毛和趋化性缺陷菌株)。突变菌株的平均突变数为 20.6(±12.7)个,大多数突变随机分布在整个基因组中。然而,在作为趋化性缺陷突变体专门选择的 18 个突变体中,至少在六个与鞭毛相关的基因中检测到两个或更多不同的突变。使用大量突变株进行基因组分析是一种非常有效的工具,可以使用正向遗传学全面鉴定与特定表型相关的基因。