Farroukh Hussein, Kaddah Fouad, Wehbe Toufic
Mechanical Engineering Department, Saint Joseph University of Beirut, Beirut, 17-5208, Lebanon.
Civil Engineering Department, Saint Joseph University of Beirut, Beirut, 17-5208, Lebanon.
Heliyon. 2024 Mar 13;10(6):e28063. doi: 10.1016/j.heliyon.2024.e28063. eCollection 2024 Mar 30.
This paper aims to indicate numerically the accurate porosity used for dental implants, following the emphasis on the preference for titanium foam on pure titanium implants. A 3D-optimized numerical model is created to demonstrate the detailed differences between models.
A 3D finite element model was generated using Abaqus for titanium and titanium foam implants with different porosities (50,60,62.5,70, and 80%) fixed in cortical and cancellous bone. The mechanical data for titanium foam is extracted from published literature. We evaluate an artificial intelligent equation for the stress-strain response of titanium foam with various porosities to describe their variations.
To evaluate the stress-strain variations for different porosities, exponential artificial intelligence provides high accuracy (>0.99). The numerical results show that titanium foam implants appear to transfer more loads to the bordering bones due to their lower stiffness and higher energy absorption, which can help reduce stress shielding problems. In surrounding bones, the maximum VM stress occurs at the neck region from 5.42 MPa for pure titanium to 21.53 MPa for titanium foam with 80% porosity. Additionally, a porosity of 62.5% appears to be the most suitable since Young's modulus for this porosity (13.82 GPa) is close to the cortical bone's modulus (14.5 GPa). This suitability is shown in FEA by the similarity in stress level between pure titanium and the corresponding porosity. Overall, titanium foam implants appear to be a promising option for improving the effectiveness and longevity of bone implants in surgical dentistry.
Systematic numerical studies on titanium foam dental implants with different porosities. Analysis of the FE results shows that titanium foam with a porosity of 62.5% is more beneficial for use in dental implants.
本文旨在通过强调泡沫钛优于纯钛种植体,以数值方式指出用于牙种植体的精确孔隙率。创建了一个3D优化数值模型来展示不同模型之间的详细差异。
使用Abaqus生成了一个3D有限元模型,用于模拟孔隙率不同(50%、60%、62.5%、70%和80%)的钛及泡沫钛种植体植入皮质骨和松质骨的情况。泡沫钛的力学数据取自已发表的文献。我们评估了一个人工智能方程,用于描述不同孔隙率泡沫钛的应力 - 应变响应变化。
为评估不同孔隙率下的应力 - 应变变化,指数型人工智能提供了高精度(>0.99)。数值结果表明,由于泡沫钛种植体刚度较低且能量吸收较高,它们似乎能将更多载荷传递至相邻骨,这有助于减少应力遮挡问题。在周围骨中,最大等效应力出现在颈部区域,从纯钛的5.42兆帕到孔隙率为80%的泡沫钛的21.53兆帕。此外,62.5%的孔隙率似乎最为合适,因为该孔隙率下的杨氏模量(13.82吉帕)接近皮质骨的模量(14.5吉帕)。在有限元分析中,纯钛与相应孔隙率之间应力水平的相似性表明了这种适用性。总体而言,泡沫钛种植体似乎是提高口腔外科骨植入物有效性和使用寿命的一个有前景的选择。
对不同孔隙率的泡沫钛牙种植体进行了系统的数值研究。有限元分析结果表明,孔隙率为62.5%的泡沫钛更有利于用于牙种植体。